Computation of Noncentral F Probabilities using Neural Network Theory

신경망이론을 이용한 비중심 F분포 확률계산

  • 구선희 (전주대학교 전기전자컴퓨터 공학부)
  • Published : 1996.08.01

Abstract

The test statistic in ANOVA tests has a single or doubly noncentral F distribution and the noncentral F distribution is applied to the calculation of the power functions of tests of general linear hypotheses. In this paper. the evaluation of the cumulative function of the single noncentral F distribution is applied to the neural network theory. The neural network consists of the multi-layer perceptron structure and learning process has the algorithm of the backpropagation. Numerical comparisons are made between the results obtained by neural network theory and the Patnaik's values.

ANOVA 검정에서 검정통계량은 단일 또는 이중 비중심F분포를 따르며 비중심F분포는 일반적인 선형 가설 검정에서 검정함수 계산에 적용되고 있다. 본 논문에서는 단일 비중심F분포의 누적함수 계산에 신경망이론을 적용하였다. 신경망 구조는 다층 퍼셉트론이며 학습과정은 역전과 학습알고리즘이다. 신경망이론에 의하여 계산한 결과와 Patnaik 이 제시한 확률값을 비교하여 제시하였다.

Keywords