한국컴퓨터정보학회논문지 (Journal of the Korea Society of Computer and Information)
- 제1권1호
- /
- Pages.83-94
- /
- 1996
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
신경망이론을 이용한 비중심 F분포 확률계산
Computation of Noncentral F Probabilities using Neural Network Theory
초록
ANOVA 검정에서 검정통계량은 단일 또는 이중 비중심F분포를 따르며 비중심F분포는 일반적인 선형 가설 검정에서 검정함수 계산에 적용되고 있다. 본 논문에서는 단일 비중심F분포의 누적함수 계산에 신경망이론을 적용하였다. 신경망 구조는 다층 퍼셉트론이며 학습과정은 역전과 학습알고리즘이다. 신경망이론에 의하여 계산한 결과와 Patnaik 이 제시한 확률값을 비교하여 제시하였다.
The test statistic in ANOVA tests has a single or doubly noncentral F distribution and the noncentral F distribution is applied to the calculation of the power functions of tests of general linear hypotheses. In this paper. the evaluation of the cumulative function of the single noncentral F distribution is applied to the neural network theory. The neural network consists of the multi-layer perceptron structure and learning process has the algorithm of the backpropagation. Numerical comparisons are made between the results obtained by neural network theory and the Patnaik's values.
키워드