The Improving Method of Characters Recognition Using New Recurrent Neural Network

새로운 순환신경망을 사용한 문자인식성능의 향상 방안

  • 정낙우 (서강전문대학 전자계산과) ;
  • 김병기 (전남대학교 전산학과)
  • Published : 1996.08.01

Abstract

In the result of Industrial development. largeness and highness of techniques. a large amount of Information Is being treated every year. Achive informationization. we must store in computer ,all informations written on paper for a long time and be able to utilize them In right time and place. There Is recurrent neural network as a model rousing the output value In learning neural network for characters recognition. But most of these methods are not so effectively applied to it. This study suggests a new type of recurrent neural network to classifyeffectively the static patterns such as off-line handwritten characters. This study shows that this new type Is better than those of before in recognizing the patterns. such as figures and handwritten characters, by using the new J-E (Jordan-Elman) neural network model in which enlarges and combines Jordan and Elman Model.

산업발전과 기술의 대형화. 고도화 등으로 인하여 매년 방대한 양리 정보가 처리되고 있다 정보화를 이루기 위해서는 대부분 종이로 기록뇌어 내려오던 정보를 컴퓨터에 저장하여 적기적소에 사용할 수 있어야 한다. 문자인식을 위한 신경망의 학습에 있어서 출력 값을 재사용하는 신경망모델로는 순환신경망이 있다. 그러나 이러한 방법들의 대부분은 오프라인 필기체문자와 같은 정적인 패턴의 분류에 있어서는 효과적으로 적락되지 않는다. 이에 본 연구에서는 오프라인 필기체문자와 같은 정적인 패턴을 효과적으로 분류하기 위한 새로운 형태의 순환신경망을 제안한다. 본 논문은 Jordan과 Elman Model을 확장 결합한 새로운 J-도(Jordan-Elman) 신경망 모델을 사용하여 숫자 및 필기체 문자와 같은 정적인 패턴의 인식에서 기존의 신경망보다 성능이 향상되었음을 보여준다.

Keywords