Journal of the Korean Nuclear Society
Volume 28, Number 6, pp. 522~531, December 1996

A Method of Knowledge Base Verification for Nuclear Power
Plant Expert Systems Using Extended Petri Nets

I. W. Kwon and P. H. Seong
Korea Advanced Institute of Science and Technology
Department of Nuclear Engineering
373-1 Kusong-dong, Yusong-gu, Taejon 305-701, Korea

(Received February 13, 1996)

Abstract

The adoption of expert systems mainly as operator supporting systems is becoming increasingly

popular as the control algorithms of system become more and more sophisticated and complicated.
The verification phase of knowledge base is an important part for developing reliable expert system-
s, especially in nuclear industry. Although several strategies or tools have been developed to per-

form potential error checking, they often neglect the reliability of verification methods. Because a

Petri net provides a uniform mathematical formalization of knowledge base, it has been employed

for knowledge base verification. In this work, we devise and suggest an automated tool, called COK-
EP(Checker Of Knowledge base using Extended Petri net), for detecting incorrectness, inconsisten-
cy, and incompletensess in a knowledge base. The scope of the verification problem is expanded to
chained errors, unlike previous studies that assume error incidence to be limited to rule pairs only.

In addition, we consider certainty factor in checking, because most of knowledge bases have cer-

tainty factors.

1. Introduction

The adoption of expert systems mainly as operator
support systems is becoming gradually popular in nu-
clear industry as the control algorithms of nuclear
power plant system become more and more sophisti-
cated and complicated. As a result of this popularity,
a large number of expert systems are developed, and
most of these systems employ a rule-based formalism
for knowledge representition since it is the simplest
knowledge representation method to develop. In
spite of this advantage, incorrectness, inconsistency,
and incompleteness can be inadvertently brought
into the knowledge base because it is often built in
an such

incremental process. In other words,

anomalies may occur at any stage in the knowledge

522

transfer process that is to transfer expertise from the
human expert into the computer by the knowledge
enqineers.

The traditional approaches to knowledge base
verification, which have generally involved each rule
comparison and decision context enumeration[1],
They

domain-specific information in the verification pro-

are computationally expensive. used
cess. Verification tools and algorithms developed
later, such as COVADIS[2] and EVA[3], were base
on a variety of approaches and were capable of
detecting more subtle cases of anomalies. In recent
days, a Petri netbased verification method was
proposed(4]. A numerical Petri net was used to
model knowledge base of production rules, and

reachability analysis was then conducted to reveal

A Method of Knowledge Base Verffication for--- L W. Kwon and P. H. Seon 523

inconsistency and incompleteness in a knowledge
base[5]. In PREPARE[6], anomalies in a knowledge
base are defined in terms of the Pr/T net model.
Then, these terms are indentified by using syntactic
pattern recognition method.

In order to extend previous researches we consider
verification of knowledge base having certainty factor,
in global level as well as in local level. We devise and
suggest an automated tool, called COKEP(Checker
Of Knowledge base using Extended Petri net), for
detecting incorrectness(redundant, subsumed, circular
rules), incosistency(conflict rules), and incompie
teness(unreachable conclusion, unreferenced condi-

tions, isolated, omitted rules) in a knowledge base.

2. Extended Petri Nets(EPN)

In this section, we give formal definitions for the
basic extended Petri net concepts. These basic
concepts are used throughout our study of knowl-
edge base verification.

2.1. EPN Structure

The notation employed in this work is based on
that of the reference [7). The original Petri net is
composed of four parts:a set of place P, a set of
transitions T, input functions I, and output functions
O, The input and output functions are related to
transitions and places. The input functions I are a
mapping from a transition ¢ to a collection of places
Kt), known as the input places of the transition. The
output function O maps a transition ¢ to a collection
of places Olt) known as the output places of the
transition.

The petri net is extended by Derek because the
net is used to rule base verification[8]. Derek
introduced a transition place to the Petri net in order
to use the net to knowledge verification. In this work,
the input fuction is further divided into two input
functions, I, Iz, in order to distinguish the initial

known places from the common places(the output of
other rules). This process is more realistic and practi-
cal because most knowledge base infers the goal
after coming a new known fact, not common fact.
The initial known places are the places that are
inputted initially to verify the knowledge base system.

The structure of a Petri net is defined by its places,
transitions, input functions, and putput functions. An
EPN structure, C, is a six-tuple, C(P, P", T, I, I, Q).
P'={p", p -, p'm is a finite set of transition
state places, m>0. Place p” is the transition state
place that informs whether transition is fired or not.
Input functions, in the extended Petri net, are classi-
fied into two types. Input functions I are used for
searching the path of chained rules, and input func-
tions I are used for finding the known facts of chain-

ed rules.
Input and output functions, [and O for each tran-

sition, are bags of places. A bag is a generalization of
sets which allows multiple occurrences of an element
in a bag. The use of bags, rather than sets, for the
inputs and outputs of a transition allows a place to
be a multiple input or a multiple output of a tran-
sition. The multiplicity of an input place p: for a tran-
sition t is the number of occurrences of the place in
the input bag of the transition, #(p, L(t)) and # (p,
L{t)).

Similarly, the multiplicity of an output place p: for
a transition t; is the number of occurrences of the
place in the output bag of the transitions, #(p;, O(t)).
If the input and output functions are sets(rather than
bags), then the multiplicity of each place is either

Zero or one.

2.2. EPN Graphs

Most of the theoretical works on Petri nets are
based on the formal definition of Petri net structures
given above. However, a graphical representation of
a Petri net siructure is much more useful for illustrat-
ing the concepts of Petri net theory. An extended
Petri net graph is a representation of an extended

524

Petri net structure as a bipartite directed multigraph.
An extended Petri net structure consists of places
and transitions. Corresponding to these, an extended
Petri net graph has four types of nodes. A circle O
represents a primitive input or output place;a circle
@ represents a new known input place;a circle ©
represents transition state place ; a bar | represents a
transition. Directed arcs(arrows) connect the places
and the fransitions, with some arcs directed from the
places to the transitions and other arcs directed from
transitions to places. An arc directed from a place p
to a transition t defines the place to be an input of
the transition. Multiple inputs to a transition are
indicated by multiple arcs from the input places to
the transition.

An extended Petri net is a multigraph, since it
allows multiple arcs from one node of the graph to
another. In addition, since the arcs are directed, it is
a directed multigraph. Since the nodes of the graph
can be partitioned
transitions), such that each arc is directed from an el-

into two sets(places and

ement of one set(place or transition) to an element
of the other set{transition or place), it is a bipartite
directed multigraph, G=(V, A). V={uv1, vz, **, v} is a
set of vertices and A={ai, a, -+, a} is a bage of
directed arcs, a: = (u;, v), with v, ki€ V. The set V can
be partitioned into two digjoint sets P and T such
that V=PUT, PNT=¢. And for each directed arc,
a€A if a=(u, v, then either yEP and €T or

vET, and EP.

2.3. EPN Marking

A marking p is an assignment of tokens to the
place of an EPN. A token is a primitive concept for
Petri net(like places and transitions). Tokens are as-
signed to, and can be thought to reside in, the place
of an EPN. The number and position of tokens may
change during the execution of an EPN. The tokens
are used to define the exection of an EPN. A mark-
ingpuofan EPN C=(P, P, T, L, I, O) is a function
from the set of places P to the nonnegative integers

J. Korean Nuclear Society, Vol. 28, No. 6, December 1996

N. p:P—N.

The marking # can also be defined as a n-vector,
p=(p1, p2, -+, pn), where n=|P| and each u € N,
i=1, -+, n. The vector x gives for each place p: in a
extended Petri net the number of tokens in that plac-
es. The number of tokens in place pi is g, i=1, -+,
n. The definitions of a marking as a function and as
a vector are obviously related by (pi)= s The func-
tion is somewhat more general and so is more com-
monly used.

A marked Petri net M=(C, p) is an EPN structure
C=(P, P, T, I, Is, O) and a marking . This is also
sometimes written as M=(P, P', T, L, I, O,). On
an EPN graph, tokens are represented by small dots
@ in the circles which represent the places of a Petri
net. Since the number of tokens which may be assig-
ned to a place of a Petri net is unbounded, there
can be infinite number of markings for a Petri net.
The set of all markings for an extended Petri net
with n places is the set of all n-vectors.

2.4. Execution Rules for Extended Petri Nets

The execution of the extended Petri net is con-
trolled by the number and distribution of tokens in
the extended Petri net. The extended Petri net exec-
uted by firing transitions. A transition can be fired by
removing tokens from its input places and creating
new tokens which are distributed to its output places.

A transition is enabled if each of its input place
and transition state place has at least one token in it
which is connected by arcs from the place to the tran-
sition. Multiple tokens are needed for multiple input
arcs. A transition t€ T in a extended Petri net C=
(P, P, T, I, I, O) with marking z is enabled if for all
pE P,

#(pi) = #pi, L))+ # pi, L ()]

and #(p%) = {1}.

A transition firing removes all of its enabling tok-
ens from its input places and transition place, then

A Method of Knowledge Base Verffication for-+- . W. Kwon and P. H. Seong 525

deposes one token into each of its output places.
Multiple tokens are produced for multiple output
arcs. Firing a transition will in general change the
marking x of the extended Petri net to a new mark-
ing z’. A transition ¢, in a marked Petri net with mar-
king « may fire, whenever it is enabled. Firing an
enabléd transition 4 results in a new marking " de-

fined by
' (pi)=p(pi)-#pi, 1 (4)]-
#pi, LU +# pi, O@))

Transition firings can continue as long as there
exists at least one enabled transition. When there are
no enabled transitions, the execution halts.

3. Anomalies in Knowledge Base

The anomalies in knowledge base can be divided
into three types, that are incorrectness, inconsistency,
and incompleteness. They are described as follows :
Incorrectness

Redundant rules : Two rules are redundant if they
contain the same set of conditions(but conditions
may be arranged in a different order) and have the
same conclusion, then one of them is said to be re-
dundant. For example, one of the following two rules
are redundant :

1) IFla(x) and b(y)] THEN c(z) (0.7)

2) IF[bly) and a(x)] THEN c(z) (0.7)
where x, y, and z are variables, and @ and ¢ are logi-
cal relationships.

Subsumed rules : One rule is subsumed by anot-
her if the two rules have the same conclusions, but
one contains additional constraints on the conditions.
Then, it is called a subsumed rule. The more restric-
tive rule can be subsumed by the less restrictive rule.
Consider the following rules :

1) IF[a(x) and aly)] THEN c(z) (0.8).
2) IF a(x) THEN ¢(z) (0.8).

Rule 1} can be subsumed by rule 2). Whenever

the more restrictive rule succeeds, the less restrictive

rule also succeeds, resulting in redundancy.

Circular rules: A set of rules is circular if the
chaining of rules in a set forms a cycle. Consider fol-
lowing rules :

1) IFa(x) THEN b(x) (08)

2) IFb(x) THEN c(x) (08)

3)IFc(x) THEN a(x) (08)
The systems enter infinite loop at run time unless the
system has a special way of handling circular rules.
Also, this definition includes the possibility of a single
rule to form a cycle, i.e,, IF a{x) THEN a(x).
Inconsistency

Conflicting rules : Two rules are conflicting if they
have the same conditions but with conflicting conclus-
jons, consider the following rules :

1) IF a(x) THEN b{y) (0.8)

2)IFa(x} THEN c(z) (09).
Rule 1} is contradictory to the rule 2). Sometimes,
given the same set of symptoms, the expert might
wish to conclude different conclusions with different
certainty factors.
Ihcompleteness

A knowledge base is incomplete when it does not

have all the information necessary to answer a ques-
tion of interest to the systems. There are three main
causes for incompleteness in a knowledge base.
First, during the knowledge acquisition process, both
the expert and the knowledge engineer may have
inadvertently left gaps in the knowledge base without
nofticing. The second cause is when the expert’s beh-
avior, which is often based on heuristic, incomplete,
and uncertain knowledge, is carried into the system.
Finally, the knowledge engineer may lose track as the
knowledge base grows larger and becomes intrac-
table.

Unreachable conclusion rules:In a goal driven
production systems, the conclusion of a rule should
match either a goal or an IF condition of another
rule. If there are no matches, it is unreachable. Con-
sider the following rule.

IF [a(x) and aly) THEN c(z) 0.8).
If the ¢(z) is not the goal of knowledge base and it

does not appear as a condition in any other rule,

526

then it is called an unreachable conclusion rule. This
type of rules also suggests that there may be other
rules or facts missing.

Unreferenced condition rules : If one of rule con-
ditions does not appear as the conclusion of another
rule or as a known fact, it is an unreferenced con-
dition. Consider the following rule :

IF [a(x) and aly) THEN c(z) (0.8).

If a(x) or afy) does not appear as the conclusion
of another rule and is not substantiated by fact, then
it is an unreferenced condition rule. Rules with an
unreferenced condition may indicate the possibility of
some other rules or facts missing.

Isolated rules: If all of conditions are unreferen-
ced and the conclusion is an unreachable conclusion,
then the rule is called as an isolated rule. The pres-
ence of an isolated rule may indicate the possibility
of missing rules.

Missing rules : Te knowledge base has deficiency
when the rule does not produce any output. These
rules can be indicated by unreachable conclusion rul-
es, unreferenced condition rules, and isolated rules.

In developing knowledge based systems, most of
knowledge engineers may adopt certainty factors in
the knowledge base so as to improve the flexibility of
reasoning. The presence of certainty factors, how-
ever, further complicates the verification process of a
knowledge base. Allowing rules for conclusion with
less than threshold and allowing conditions to be
chained with certainty factors affect our definitions as
shown in the following paragraphs :

In redundancy, rules that are redundant can lead
to problems. They might cause the same information
to be counted twice leading to incorrect increases in
the weight of their conclusions.

The subsumption appears quite often in rule sets
because knowledge engineers frequently write rules
with incorrect knowledge so that the weights of the
more restrictive rules are added by the less restrictive
rules.

The conflict, when two rules execute at the same
condition but have different conclusions, is the com-

J. Korean Nuclear Society, Vol. 28, No. 6, December 1996

mon occurrence in rule sets using certainty factors.
Often; given the same set of symptoms, the expert
might wish to conclude different values with different
certainty factors. In this case, knowledge based
systems have a serious inconsistency in reasoning
process.

The checking of circular rule chains is not affec-
ted by certainty factors. However, it should be noted
that certainty factors might cause a circular chain of
rules to be broken if the certainty factor of a con-
clusion falls below the threshold.

Most of systems allow the user to specify threshol-
ds. Thus, finding unreachable conclusions In a rule
set with certainty factors also becomes complex A
conclusion in a rule could be unreachable though its
IF part matches a conclusion in a different rule. This
situation might occur if the comclusion that matches
one of the I[F conditions cannot have the certainty
factor above the threshold.

Dead-end goal could occur if there is THEN clause
that concludes with a certainty factor less than the
threshold or is a chain of rules that produces a com-
bined certainty factor less than the threshold. If this
clause with a certainty factor below threshold is an IF
condition rather than a goal, than it is would be a
dead-end condition if there were no other lines of
reasoning to determine it.

4. Development of verification Tool(COKEP)

4.1. Functional Structure of COKEP

COKEP is designed to detect anomalies in local
and chained rule level, and certainty factor errors, in
knowledge base of expert systems. In this work, COK-
EP provides an alternative strategy, transforming the
problem of verification into that of reachability of
specific states in the net. As the detection of anom-
alies is based on the results of firing transition, verifi-
cation problems can be expressed as reachability
problems. In order to solve these problems, in COK-
EP, matrix analysis of the extended Petri net and bac-

A Method of Knowledge Base Verification for--- I. W. Kwon and P. H. Seong 527

Transform EPN

Fired
function

Check certainty
factor

Check input
condition

Fig. 1. The Functional Structure of COKEP

kward reasoning of the rule set are employed.

The functional structure of COKEP is shown in
Fig. 1. As shown in Fig. 1, function of COKEP is div-
ided into tow parts, finding chained rule set and per-
forming matrix analysis. After finding chained rule
sets, COKEP checks input condition of chained rule
sets and certainty factor value from them. That is,
COKEP performs the inference backwards so as to
determine the allowable values for required input;
this process is reverse to the developers’ understand-
ing of the system. COKEP identifies certainty factor
errors, if exist in the representation of the certainty
factor. The checked input conditions and firing vec-
tor by matrix analysis of extended Petri net are com-
pared with the defined reference anomalies. COKEP
performs checking eight anomalies with three parts,
incomrectness, inconsistency, and incompleteness. Cer-
tainty factor error is identified by a threshold and ref-
erence anomalies. Verification result contains chec-
ked anomaly and certainty factor error, in local and
chained rule level.

4.2. EPN Transform of Knowledge Base

An anomaly detection approach is based on a mat-

rix view of EPN. The used program of COKEP is
MS-FORTRAN code of 1000 lines to calculate the
several matrix. Three matrices D1+ D 2, and D* to
represent the input and output functions can be de-
fined from the (P, P, T, L, I;, O) definitions of ex-
tended Petri nets. Each matrix has m rows for each
transition and n columns for each place. e[j] means
the unit m-vector that is zero everywhere except in
the jth component. The transition 1 is represented by
the unit m-vector efj].

A transition t is enabled in a symbol p if x >elj]
- (D71+D"2). The result vector, defined as &(z, t),
of firing transition t in a marking is

S (u ;)= x -[e[jl (D1 + D)+ [elj] "D’
+eljl"[D*- (D + D))

u« +e[lD, (1)

where,
D=D* —(D +D), Dlj, il =#(p, Llt)), D2j,
=#(p, L)), and D" [j, i]=#(p, O (t)). Now for a
sequence of transition fiings & =t1. t2, -+, tx,
S (u,0)=3 (4, bt o, ty)
+(elj;] D)+ (eljz] D)+~ +elj] D)
+ (elj))+ elj]+ ~ +elji}) D
“ +f(o) D. 2)
The vector f(o)=elji]+ [j2]+
firing vector of the sequence ti. tz -+, tx

+efjx] is calles the

The result vector of firing transition, t in marking s
is divided in three types. Each definition is

3{y, 6)=0 (incompleteness)
8{x, 5)=1 (inconsistency)
8{y, 6)22 (incorrectness).

The matrix analysis has some problems in check-
ing anomalies. The result vector of firing transition t,
in marking x is a necessary but not sufficient con-
dition for reachability analysis in chained rule set A
backward reasoning in the rule set is used for solving
this problem. First, the result vector of firing tran-
sition is obtained by the matrix analysis, eq.(1) and
(2). Then, we find chained rule path using matrix
D"1 and backward reasoning. The conditions for

528

chained rule transition can be acquired by matrix D2
which has the information of initial marking places.

4.3. Certainty Factor Checking

The certainty factor was used in many ESs be-
cause it has simplicity and wide availability. There are
many formalisms that have been proposed to rep-
resent and propagate certainty factor in an ES. Gen-
erally, the possible rule combinations are classified
into three scenarios and CF combination methods
for each scenario are shown as follows[9].

a) Conjunction or disjunction of rule
CF(A and B) =min{CF(A), CF(B)}
CF(A or B) =max{CF(A), CF(B)}

b) Chained rule
CF(A — B) =CF(A) x CF(B)

c) Multiple combination of rule

IF CF,20.1 and CF,20.3,

CF(C) = CF, + (CE, - 0.1)- CF, x CF,

IF CF;£0.1 and CF;<0.3,
CF (C) = max{CF,,CF,}

IF CF;<0.1 and CF;>0.3 or CF, >
0.1 and CF, < 0.3,
max(CF, , CF,)- min (CF, ,CF,)
1 — min (CF, ,CF,)

CF(C) =
IF CF,=CF,=0.2, CF(C)=0.2,

This CF combination method, slightly modified, is
used for checking CF error. COKEP use the chained
rule method. After finding chained rule sets, COKEP
checks input condition of chained rule sets and cer-
tainty factor value from them, using above second
method. That is, COKEP performs the inference bac-
kwards so as to check the combined certainty values.

4.4. Application to a Simple Example

In order to demonstrate the utility of COKEP we

devise a simple example. Consider the simple level

control system(see Fig. 2). In this system we may con-

J Korean Nuclear Society, Vol. 28, No. 6, December 1996

Pipe §

v3

/ Pipe 6

@
Fig. 2. A Simple Level Control System

sider five fault sites; pump, drain valve V3, vessel lev-
el, level sensor L2, controller LC1 or actuatro CVI1.
When Knowledge engineer and ES developer build
the knowledge for solving the problem, a fault in the
level control system, they may propose the sixteen
made-up rules in Table 1.

In their present form they have anomalies in logi-
cal aspect of knowledge base, but these anomalies
cannot be easily checked by knowledge engineer or
system developer. We apply the COKEP in this know-
ledge base, and results are shown in Tables 3 and 4.
anomaly of knowledge since COKEP checks incom-
pleteness rule, not considering other anomalies at fir-
st stage. The rule 6 in Table 2 is generated in order
to correct the incompleteness error of Table 4. After
correcting incompleteness, COKEP preforms check-
ing the incorrectness, inconsistency, and certainty fac-
tor error, shown in Table 4. Certainty factor threshol-
d value used in this case is 0.5. This value may be
changed by the requirement of knowledge engineer.

The Perti net of the knowledge base in Table 1 is
shown in Fig. 3. In Fig.3, the places which have tok-
ens are the initial known places related to input fun-
ction L. COKEP makes the matrix automatically and
calculates to obtain the next state functions by using
the knowledge in Table 1 and equation(2). After mat-
rix calculation, COKEP classifies the anomaly candid-

A Method of Knowledge Base Verffication for--- I. W. Kwon and P. H. Seong

Table 1. Knowledge Base Example

529

Table 2. Knowledge Base Example(Checked Knowledge

Base)
Comtent CF
1 f CV1 open and F1>100gpm (0.7) Comtent cr
then pump on 1 i CV1 open and F1>>100gpm (0.7)
2 CV1 open and F1>100gpm (08). then __pump on
then sink environment abnormal 2 f CVI open and F1>100gpm 08)
37 ovi d F1>100g 03] then sink environment abnormal
open an m)
‘ pe P 3 f CVI open and F1>100gpm 08)
then sensor abnormal
then sensor abnormal
4 f CV1 open and F1>100gpm (08) 4 f CV1 open and F1>100gpm (08)
then actuator or confroller abnormal then actuator or controller abnormal
5 CV1 open and F1>100gpm 0.8) 5 CV1 open and F1< 100gpm (0.9)
then pump off then pump off
6 i CVI close and F1>100gpm (0.8) 6 if CVI1 open and F1<100gpm (09)
then sensor abnormal then source environment abnormal
7 CWV1 close and F1>100gpm 07) 7 CV1 close and F1<100gpm (0.8)
then actuator or controller abnormal then sensor abnormal
8 f pump on and L2LO (08) 8 ff CV1 close and F1<100gpm (0.7)
then actuator or controller abnormal
then sink environment abnormal
o T L2HI 07 9 i pump on and [2LO - (0.8)
f pump on an ' then sink environment abnormal
then actuator or controller abnormal 10 § pump on and L2HI 0.7)
10 f pump off and F2<80 gpm and {0.7) then actuator or controller abnormal
12LO 11 i pump off and F2<80 gpm and (0.7)
then pump 1 fail 21O
11 sink environment abnormal and (0.8) then pump 1 fail
F2<80 gpm 12 if sink environment abnormal and (0.8)
then drain valve open F2<80 gpm
12 sink environment abnormal and (09) then drain valve open
F2<80 gpm 13 i sink environment abnormal and (0.9)
F2>80gpm
then CV1 or LC fail then CVI or LC fail
13 f source environment abnormal and (0.8) 14 i source environment abnormal and (0.8)
F2>80gpm and 1.21.0 F2<80gpm and L2LO
then vessel level low then vessel level low
14 i sensor abnormal and F2>80gpm (0.8) 15 if sensor abnormal and F2>80gpm (0.8)
then 12 device fail and [2LO
. then L2 device fail
15 ff sensor abnormal and F2<80gpm (0.8)
and L2 16 if sensor abnormal and F2<80gpm (0.8)
] . and [2HI
then L2 device fail then L2 device fail
16 actuator or controller abnormal (0.9) 17 if actuator or controller abnomal (0.9)
and F2>80gpm and [ZHO and F2<80gpm and L2HI
then CVI or LC fail then CV1 or LC fail

530

Table 3. Checking Result I.(Incompleteness Anomaly)

rule #=13
rule #=16

Unreferenced condition Sre _ab
Unreferenced condition LZHO

Fig. 3. Petri net of Knowledge Base in Table 1

Table 4. Checking Result IL.(Incorrect, Inconsistency,

CF Anomaly)

Chained
Goal Condition
rule #

Incorrect rule 4,17 CVl _LC LZHILCV] op,
F1>100F2>80
CVl_LC L2HICVI_op,

F1>100F2>80

(redundant) 1,10,17

Inconsistent rule 3,15 L2 _fal L2LOCVI1 _op,
F1>100,F2>80
CVl_LC [2LOCVI1 _op,

F1>100F2>80

(conflict) 19,13

CF error 19,12
(threshold =0.5) 1,10,17

d_v_op CF=045
CVi_LC CF=044

J. Korean Nuclear Society, Vol. 28, No. 6, December 1996

ates according to the number of markings in the plac-
es. For example, the goal places which are candid-

ates for incorrect anomalies have two tokens. The

number of paths connected to the places is 24. COK-
EP checks the initial known factors and goals of the

paths. If reasoning paths contain the sarne set of con-
ditions(but conditions amy be arranged in a different
order) and have the same conclusion, then one of
them is said to be redundant, The results of path
checking are shown as the incorrect rule in Table 4.

First result in Table 3 shows the incompleteness
The checked knowledge base is shown in Table 2.

An alternative strategy is provided in this work
which transforms the problem of verification into that
of reachability of specific states in the net. As the de-
tection of anomalies is based on the results of firing
transition, the verification problems can be expressed
as the reachability problems.

5. Conclusion

Verification and validation are vital to the success
of ES(Expert System). Sufficient guidelines on ES
V&M Verification & Validation), however, have not
been formed despite of many approaches and met-
hods. The verification has, until now, focused upon
building novel anomaly detection systems and im-
proving the efficiency of existion systems. The issues
of theoretical foundations of knowledge base verifi-
cation, however, have remained unaddressed.

In this aspect, the work presented here provides a
reliable and uniform verification method that adopts
improved verification techniques and an automated
integral verification tool. COKEP tool is based on
modeling a knowledge base by using the extended
Petri net, and uses matrix analysis and backward reas-
oning in verification process. The scope of the verifi-
cation in COKEP is expanded to chained errors un-
like previous works that assume error incidence to be
limited to rule pairs only. In addition, COKEP tool
also checks certainty factors which are included in
most expert system.

A Method of Knowledge Base Verffication for+-- I. W. Kwon and P. H. Seong 531

The application results of KB(Knowledge Base)
V&M Verification & Validation) with the use of the
COKEP tool and Petri nets show that the logical
checking reveals anomalies successfully in a knowl-
edge base. The proposed method in this work, how-
ever, has some limitation for KB V&V. First, COKEP
tool detects only the previously defined anomalies.
The use of other detailed anomaly references will
ofter some promises for more accurate verification.
Second, the knowledge bases built in other forms
such as frames and predicates are transformed to
rule forms in order to apply Petri net. Third, the
proposed method for KB verification was applied to
a simple example, not to real ES knowledge base.
Therefore, in order to show the full capability of the
proposed method, an application to rather complex
knowledge base and the analysis of the results are
needed.

References

1. B.J Cragun and H.J. Studel, “A decision-table-bas-
ed processor for checking completeness and con-

sistency in rule-based expert system,” Int J.

Man-Machine Studies, vol. 26, pp. 633-648(1987).

. MR. Rousset, “On the consistency of knowledge

bases:COVADIS system,” Proc. 8th Eur. Conf. Al
Paris, pp. 79-84(1988)

. C.L.Chang, JB.Combs, and R.AStachowitz, “A

report on the expert systems validation associate
(EVA),” Expert Systems with Applications, Vol. 1,
pp. 217-230(1990)

. P.Meseguer, “A new method to checking rule bas-

es for inconsistency: A Petri net approach,” Proc.
9th Eur. Conf. Al, Germany, pp. 437-442(1990).

. NKLiu and T.Dillon, “An approach towards the

verification of expert systems using numerical petri
nets.” Int. J.Intell. Sys., vol. 6, pp. 255-276,(1991).

. D.Zhang and D.Nguyen, “A tool for knowledge

base verification,” IEEE Transaction of Knowledge
and Data Engineering, vol. 6, no. 6, pp. 983-989,
Dec.(1944)

. JL.Peterson, “Petri net theory and the modeling

of systems,” Prentice-Hall, Inc., Englewood Cliffs,
N.J.(1981)

. Derek L. Nazareth, “Investigating the Applicability

of Petri Nets for Rule-Based Systern Verification,”
IEEE Transaction on Knowledge and Data Engin-
eering, val. 4, no. 3, pp. 402-415, June(1993)

