NOTES ON A SYMMETRIC BILINEAR FORM ASSOCIATED WITH REGULAR DIRICHLET FORM

KI SEONG CHOI, GYE TAK YANG

ABSTRACT. We will show how bilinear form \mathcal{E}_μ related with some smooth measures can be extended to the $L^2(\mathbb{R}^n, \mathbb{C})$ setting.

1. Introduction

We consider a regular Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(X, m)$ where X is locally compact separable metric space and m is a positive Radon measure on X with $\text{Supp}[m] = X$. \mathcal{S} is the family of all smooth measures on X. Let $M = (\Omega, X_t, \zeta, P_x)$ be a Hunt process on X which is m-symmetric and associated with $(\mathcal{E}, \mathcal{F})$. For a given smooth measure μ, we denote by A_μ the unique positive continuous additive functional such that μ is the Revuz measure of A_μ. Let $\mu = \mu_+ - \mu_-$ be a signed Borel measure on X. If μ_+ and μ_- are smooth measures, then we write $\mu \in \mathcal{S} - \mathcal{S}$. For a Borel measure ν on X, $L^2(X, \nu)$ is sometimes written $L^2(\nu)$ when the underlying context is clear.

For $\mu \in \mathcal{S} - \mathcal{S}$, we put

$$\mathcal{E}_\mu(f, g) = \mathcal{E}(f, g) + \int_X f(x)g(x)\mu(dx)$$

for all $f, g \in \mathcal{F} \cap L^2(|\mu| + m)$. We consider the case where X is the Euclidean space \mathbb{R}^n and m is a Lebesgue measure on \mathbb{R}^n. It is essential to quantum mechanics.
that functions are from the space $L^2(\mathbb{R}^n, \mathbb{C})$ of square-integrable (with respect to Lebesgue measure), complex-valued functions.

In this paper we extend \mathcal{E}_μ to $L^2(\mathbb{R}^n, \mathbb{C})$ setting and find self-adjoint operator which represent the extension of \mathcal{E}_μ.

2. Extension of \mathcal{E}_μ to $L^2(\mathbb{R}^n, \mathbb{C})$

Let us use the short notation $L^2(\mu)$ for $L^2(X, \mu)$, for $\mu \in S - S$, we put

$$\mathcal{E}_\mu(u, v) = \mathcal{E}(u, v) + \int_X u(x)v(x)\mu(dx)$$

for all $u, v \in \mathcal{F} \cap L^2(|\mu| + m)$

Theorem 1. If \mathcal{E}_μ is bounded below, densely defined and closed, then there exist a unique, densely defined self-adjoint operator H^μ which is bounded below and satisfies $(H^\mu u, v) = \mathcal{E}_\mu(u, v)$ for all $u \in D(H^\mu)$ and $v \in D(\mathcal{E}_\mu)$

Proof. See [4] Theorem 2.6

For $\alpha \geq 0$, μ and ν in $S - S$, $f \in B(X)$, we set

$$U_\nu^{\alpha + \mu}f(x) = E_x[\int_0^\infty \exp\{-\alpha t - A_t^\nu\}f(X_t)dA_t^\nu]$$

provided the right hand side makes sense. When $\nu = m$, we simply write $U^{\alpha + \mu}f$ for $U_\nu^{\alpha + \mu}f$.

In the following Theorem 2, we consider the case where X is the Euclidean space \mathbb{R}^n and m is a Lebesgue measure on \mathbb{R}^n. If ψ is a function in $L^2(\mathbb{R}^n, \mathbb{C})$ (space of square integrable, complex valued functions), we denote by ψ_1 its real part and by ψ_2 its imaginary part; i.e., $\psi = \psi_1 + i\psi_2$
Theorem 2. Let $\mu \in S - S$ be such that

$$U^{\alpha + \mu}(L^2(m)) \subset L^2(m)$$

for some $\alpha > 0$. Suppose that \mathcal{E}_μ is closed. If we define \mathcal{E}_μ^C by

$$\mathcal{E}_\mu^C(\psi, \varphi) = \mathcal{E}_\mu(\psi_1, \varphi_1) + \mathcal{E}_\mu(\psi_2, \varphi_2) + i[\mathcal{E}_\mu(\psi_2, \varphi_1) - \mathcal{E}_\mu(\psi_1, \varphi_2)]$$

for all $\psi, \varphi \in D(\mathcal{E}_\mu) + iD(\mathcal{E}_\mu) \subset L^2(\mathbb{R}^n, \mathbb{C})$, then \mathcal{E}_μ^C is densely defined, bounded below and closed.

Proof. Since $D(\mathcal{E}_\mu)$ is dense in $L^2(\mathbb{R}^n)$, $D(\mathcal{E}_\mu) + iD(\mathcal{E}_\mu)$ is dense in $L^2(\mathbb{R}^n, \mathbb{C})$. Since $U^{\alpha + \mu}(L^2(m)) \subset L^2(m)$, \mathcal{E}_μ is bounded below [1. Theorem 4.1].

Let A be some real number satisfying $\mathcal{E}_\mu(u, u) \geq A\|u\|^2$ for all $u \in D(\mathcal{E}_\mu)$ and let $\psi = \psi_1 + i\psi_2 \in D(\mathcal{E}_\mu) + iD(\mathcal{E}_\mu)$. Then we have $\mathcal{E}_\mu^C(\psi, \psi) \geq A[\|\psi_1\|^2 + \|\psi_2\|^2] = A\|\psi\|^2$ by the symmetry of \mathcal{E}_μ.

To verify \mathcal{E}_μ^C is closed, it suffices to show that $D(\mathcal{E}_\mu^C)$ is complete under the norm

$$\|\psi\|^2 = \mathcal{E}_\mu^C(\psi, \psi) + (-A + 1)\|\psi\|^2$$

Let (ψ_n) be a sequence in $D(\mathcal{E}_\mu^C)$ such that $\|\psi_n - \psi_m\| \to 0$ as $n, m \to \infty$. Then $\psi_n = \psi_{n,1} + i\psi_{n,2}$ for each $n \in N$, where $\psi_{n,1}, \psi_{n,2}$ are in $D(\mathcal{E}_\mu)$. By the symmetry of \mathcal{E}_μ,

$$\|\psi_n - \psi_m\|^2 = \mathcal{E}_\mu^C(\psi_n - \psi_m, \psi_n - \psi_m) + (-A + 1)\|\psi_n - \psi_m\|^2$$

$$= \mathcal{E}_\mu(\psi_{n,1} - \psi_{m,1}, \psi_{n,1} - \psi_{m,1}) + \mathcal{E}_\mu(\psi_{n,2} - \psi_{m,2}, \psi_{n,2} - \psi_{m,2})$$

$$+ (-A + 1)\|\psi_{n,1} - \psi_{m,1}\|^2 + (-A + 1)\|\psi_{n,2} - \psi_{m,2}\|^2$$
\[= \mathcal{E}_\mu(\psi_{n,1} - \psi_{m,1}, \psi_{n,1} - \psi_{m,1}) + (-A + 1)\|\psi_{n,1} - \psi_{m,1}\|^2 \]
\[+ \mathcal{E}_\mu(\psi_{n,2} - \psi_{m,2}, \psi_{n,2} - \psi_{m,2}) + (-A + 1)\|\psi_{n,2} - \psi_{m,2}\|^2 \]
\[= \|\psi_{n,1} - \psi_{m,1}\|^2 + \|\psi_{n,2} - \psi_{m,2}\|^2. \]

Since \(\|\psi_n - \psi_m\| \to 0 \), \(\|\psi_{n,1} - \psi_{m,1}\| \to 0 \) and \(\|\psi_{n,2} - \psi_{m,2}\| \to 0 \). Since \(\mathcal{E}_\mu \) is closed, there exist \(\psi_1, \psi_2 \) in \(D(\mathcal{E}_\mu) \) such that \(\|\psi_{n,1} - \psi_1\| \to 0 \) and \(\|\psi_{n,2} - \psi_2\| \to 0 \) as \(n \to \infty \).

This means that \(\|\psi_n - \psi\| \to 0 \) as \(n \to \infty \). And since \(\psi = \psi_1 + i\psi_2 \in D(\mathcal{E}_\mu^C) \), we conclude that \(\mathcal{E}_\mu^C \) is closed.

Let \(H^\mu \) be a self-adjoint operator as in Theorem 1. If we define \(H^\mu_C \) on \(D(H^\mu) + iD(H^\mu) \) by \(H^\mu_C(\psi_1 + i\psi_2) = H^\mu\psi_1 + iH^\mu\psi_2 \), then \(H^\mu_C \) is a self-adjoint operator on \(D(H^\mu) + iD(H^\mu) \subset D(\mathcal{E}_\mu^C) \).

Theorem 3. **Under the conditions of Theorem 2,**

\[(H^\mu_C\psi, \varphi) = \mathcal{E}_\mu^C(\psi, \varphi) \]

for all \(\psi \in D(H^\mu_C) \) **and** \(\varphi \in (\mathcal{E}_\mu^C) \).

Proof. By Theorem 1, there exist a unique densely defined self-adjoint operator \(H^* \) which is bounded below and satisfies \((H^*\psi, \varphi) = \mathcal{E}_\mu^C(\psi, \varphi) \) for all \(\psi \in D(H^*) \) and for all \(\varphi \in (\mathcal{E}_\mu^C) \). From the linearity of \(H^\mu_C \), \((H^\mu_C\psi, \varphi) = \mathcal{E}_\mu^C(\psi, \varphi) \) for \(\psi = \psi_1 + i\psi_2 \in D(H^\mu_C) \) and \(\varphi = \varphi_1 + i\varphi_2 \in D(\mathcal{E}_\mu^C) \).

Using consequences [[4], Corollary 2.4 and Theorem 2.6, p.323] of the first representation Theorem and the simple fact (see e.q. [[5], p.279]) that two self-adjoint operators, one of which extends the other, are actually equal, one has \(H^* = H^\mu_C \).
REFERENCES

DEPARTMENT OF MATHEMATICS, KONYANG UNIVERSITY, NONSAN 320-800, KOREA