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Numerical measures of Indicating Placement of Posets
on Scale from Chains to Antichains

Kyoung-Yul Bae’

{Abstract)

In this" paper we obtain several function” defined on finite partially ordered sets({posets) which may indicate
constraintsv o_:f comparabiliyty on setsrof teams(tasks, etc.) for which evalqation is computationally simple, a
relativé|y rare condition. in grabh-based algorithms. Using these functions a éet of num‘erical coefﬁcients and
associated . distributions obtained from a computer simulation of certain families of random graphs is
determined. From this information estimates may be made as to the actual linearity of complicated . posets.
Applications of these ideas is to-all areas where obtaining rankings from partial information in rational ways is
relevant as in, e.g., team__, scaling__, ‘and scheduling theory as well as in theoretical computer science.

Theoretical consideration of special and desirable properties of various functions is provided permitting

judgment concerning sensitivity of these functions to changes in parameters deécribing (finite) 'posets.

* Department of Information Science, Sangmyoung University
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[. Introduction

Often the effectiveness of scheduling,
clustering, and allocation methodologies
employed in the areas of parallel and
distributed '
determined by utilizing statistical information

computing can best bé

obtained when these methods are applied
directly to a sizable population of randomly-
generated task systems that take the from
of directed graphs, Such statistical analysis is
especially important when determining the
effectiveness of heuristic algorithms used to
" solve such NP complete problems since the
ad-hoc nature of these methodologies do not
readily lend themselves to analytical analysis.

A’I‘here are many algorithmic recip_es that
are poséible to generate directedv‘graphs in a
random’ manner. With most of these recipes
the I'gener"atio'n of any type of graph is
always. possible, but only graphs ‘that fall
into .a relatively small. subset of the general
population of directed graphs is ever
probable. Therefore it is always important to
choose a recipe that is biased in favor of
graphs that are typical in structure to those
that represent the real-world systems that
are expected to be applied to the
methodology.

For example, consider the case where it is
desirable to generate, in a random manner,
graphs that represent systems whose tasks

are to be allocated to a set of parallel

processing elements by some newly-created
heuristic. An obvious' consideration in this
case .is the amount of inherent parallelism
present within typical graph. If the task
allocation methodology is evaluated using an
algorithimic recipe that is biased toward
producing graphs that are highly sequential,
then the statistical evaluation of the data
collected would not reflect how well the
allocation methodology performs when
applied to the more interesting types of task
structures i.e. those possessing reasonable
amounts of parallelism.

To address this concern, the population of
graphs produced by each recipe must be
carefully analyzed before the resulting graphs
are used és‘ part of 'any analysis. A
‘cbmbiicating ‘factor is” that the recipes
themselves are often too complex to be
analyzed analytically. Fortunately, Mount
Carlo techniques can be used to gain
knowledge about the particular algorithmic
recipe by studying the population of directed
graphs that it produces. | |

I. Structure of Directed Graphs

There are many ways to characterize the
structure of acyclic directed graphs. A major
concern in the area of parallel processing is
the degree of parallelism present in a graph.
Some parameters which characterize this

include the critical path length and
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maximum number usable processors. A more
complete measure may be obtained by
relating these -acyclic structures to the
mathematical entity. callea a finite partially
ordered set [1}, or poset.

A finite poset, P .is a set composed of
elements x, which are subject to.a binary
relationship, (<), such that the following
conditions hold true for all elements in the
poset
(1) x<x;

(2) if x;<x; and x,<x; then x=x

(3) if x;<x; and x;<x, then x<x;

The first condition describes the reflexive
property, the second anti-symmetry and the
third transitivity.

Whenever the condition x,<x; and X FX,
then the binary relationship (<) is often
replaced with the - more strict relationship,
(). This may be the more appropriate
representation ‘of posets obtained from task
graphs since this implies a strict ordering.
(The (<L) relationship might be viewed as
allowing the possibility that more than one
task can be processed on the same
processing element at the same time),

Posets are usually described by a set of
covering relationships that are defined to
include all ordering relationships between the
elements of a poset x;<x, such that there

exists no other relationship in the form

Posets are often represented visually in
the form of Hasse diagrams, where each
element of the poset is portrayed as a
vertex, and directed arcs are placed between
vertices to show the covering relationships
that exit between the elements. The arcs are
assigned directions such that a \‘/ertex X
points to another vertex x; whenever there is
a covering relationship. of the form x,<x;. In
a Hasse idiggram the arc directions are not
shown explicitly ; these directions are élways
assumed to be from top to bottom of the
diagram (thus Vertex x; is below Vertex x
whenever x,<x,).. '

Two types of structures which can be
classified quite readily in“terms of their
parallelization potential are the chain and
antichain, A chain is a poset which for each
pair of elements(x;, x), one of the following
relationships, x;<x; or x;<x,, holds true. This
implies a strict linear order is present
between all of ithe elements. At the other
extreme is the antichain, which is a poset
that is not bound by any constraints (no
covering relationships) ; all its elements are
incomparable with - one another. These two
structures have definite meaning when they
represents task systems targeted for parallel
computation : a chain represents the case of
total sequentially and an antichain represents

the case of perfect (inherent) parallelism.
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Clearly structures. which -exhibit antichain-like
characteristics, are more desirable candidates
for- parallel processing than those..which ‘more
closely -resemble  chains, - Figure |1 shows the
Hasses Diagram of a' chain and an antichain
along with a poset that -has an intermediate

structure.

(Figure 1) Possible Range of Poset Structures

Chain ' 7

Antichain

I. Alignment Functions

A useful’ method -of classifying the
intermediate poset -structures is to - describe,
by some.. measure, their -degree of
‘chaininess’ (or ‘antichaininess’). Such a
technique is presented by [1],-who extended
the concept of families introduced by [3] in
a manner ‘that measures the linearity . of
posets through the calculation of special
purpose alignment functions, The method -is
based upon the idea of assigning ratings to
each.element of a poset.

Ratings are numbers that assign to
individual elements of a poset a value that

allows the elements to be compared or

ranked In some way with one another, Such
ratings are- usually. based upen incomplete
information which is analogous to the partial
order associated with the elements of posets,
The alignment functions -described by Bae
incorporate the rating functions, r, of height,
above and below, each of which can be
termed as being natural in that they all can
be obtained in a precise manner directly
from: the Hasse diagram,

The height rating, h, of a vertex is
intuitively defined as the maximum direct
‘distance’ from the. bottom of the Hasse
diagram to the current element. Such direct
distances are measured by counting the
minimum number of .arcs which must be
transversed. in the reverse direction from
elements on the bottom of the diagram to
the one in question. Expressing. it in a more
formal manner, the height of element x; in
poset P is defined to be hy(x)
there exists a chain described by the

= 1, when

covering relationships xLSXZSxa---x,S_}q and
there is no other chain of greater cardinality.
The height of the elements varies from the
minimum value of zero for the element(s)
on the bottom of the Hasse diagram to some
maximum which is often termed the height
of the poset, [h(p) = max{h(x) @ xEp}l.

The ratings above, a, and below, b,
describe the number of successor and
descendent vertices, respectively, associated

with an element (plus the element itself).
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Above is defined for an- element x in“pbset
P as a(x)- = {x :'x=x)|, and in a dual
manner the rating ‘below is' defined as, Both
ratings aré ifiteger-based and have a
minimurn value of ‘1 because the (=) and
(‘<) operators always irclude the element x,
The mdximum Wvalue for both functions is
bounded by the: number of elements in the
poset |P|. In the case ‘where a,(x) =
b,(x;) =1 then element x; is a singleton (ie.
an’ unconnected -vertex -on the : Hasse
diagram) which of courSe implies that h(x)
=0, 1t is interesting to note that a, and b,
are duals of 6he another in the sense that if
the “relationship (<) were replaced by the
relationship (>)'in describing the poset then
a,=b, and b,=a, where the asterisk
indicates the ‘new’ value of above and:below
respectively.

+ Ratings often aré produced in a manner
that ‘correlate ‘in some way with ‘the ordering
relationships  describing a poset. Rating
functions r,, -which produce - values that are
consistent with the: order (ie. when x,<x,
then r,(x;) <r,(x;)) are termed order-
covariant, Those that produce values which
are inversely correlated “with the ordering
relationship are considered ‘to ‘be order-
contravariant, Considering the ratings
functions ' just described, height and below
are order-covariant ‘and above is order-
contravariant. ©  Alignment functions can be

constructed by employing mathematical

entities called indicator functions, I, that
produce a numeric value for ,eaq}:l; ordered
pair, (x, x,), of elements in a poset. Such
indicator functions- form a: basis upon which
any two elements of a poset can be
compared with one another, often including
those which are incompletely specified - by
the. ordering relationships that describe the
poset (ie. the so-called free-pair elements, x;
and x;). Indicator functions often employ one
or more rating functions which can be very
diverse ‘in nature: ‘the general form of the
indicator - funiction. being employed by Bae is

shown in- Equation(1) ;
LIy = 8528y - Bp)(xi, X))

'Y p-
= E.'&‘(x‘) - &(x)] -g(ek(xo -8(x)] (D

where (x, x;) are any two elements of
the poset, 8, -+ 0, are any number of order~
covariant rating' functions, and 8, -+ 6 are

order-contravariant: ones,

The alignment function, A, presented by
{1], examines all possible ordered pairs of
elements, applies the aforementioned Md§cator
funcfion to each ordered pair, tottals' the
number of instances that the indicator
function produces non-negative results, and
reports this number in the form of the
proportion of the total population of ordered

pairs. Its general form is shown in Equation
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- (2):
Aplth ~ B 6y~ By -

I{xgx;e";‘ng [61 - Ba: 0y - Bpl(xix;2 P
lplz

- wheré (x, x;)-are any two elements of

poset,. P, 0 -+ 0, are any number of order-

covariant rating functions, 4, -+ 0 and are

orderscontravanant ones,

*The possible indicatcr functions that utilize
the .ratings of height, above; and- satisfy the
requirements imposed in Equation(2) are the
functions L[h, a), L[b, a], and L[h, b,
a,). (In this case consideration is given only
to indicator functicns which employ at least
one co-variant and one contra-variant rating
function). It has been proven that these
alignment functions have a lower bound value
that - correspon<is to posets forming a chain
and an upper bound value for posets which
are antichains[2] (see Equation (3) - (5)).

1 )
Tl o Bplonane = [P Apfhy, 3lamanm =1 (3)

i
210 Al = P70y aplomoane =1 ()

Aplhip, by Appcmaany

F+h
= 2P

Aol by 2 Javnon =1 ()

”)

There are several considerations when
relating these alignment functions to acyclic
task systems, First, it must be remembered
that these alignment functions do not take
into account node or are weightings. For this
reason, one can consider them as measuring
the connection structure, not necessarily the
execution efficiency associated with a task
graph. These alignment functions do
correlate well, however, to cases where there
is a farly even distribution of task execution
times, and arc weights are fairly uniform :
Another consideration is that alignment
functions are not exact in nature, This is
highlighted by the fact that there are slight
differences between the relative vélues of
chaininess assigned to certain posets
structures by the three alignment functions
which have been described. It must be
emphasized that these differences are slight,
and that alignment functions appear to be a
very efficient method for such measurements
to be made across an arbitrary class of
posets (the execution of the algorithm is

order n’ time where n = |PJ).

V. Random Directed graph
Generation

The usefulness of alignment functions in

the area of evaluating allocation
methodologies stems from their ability to

quantity in a numerical manner the structure
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of posets. This' permits randomly generated
posets to be placed into groups based upon
their structure (or their expected structure),
éﬂowﬁlg competing allocation methodologies
to be ranked by analyzing, in a statistical
manner, how well each performs on a
certain range of groups.

There are many methods possible to
randomly generate such posets, with some
methods being based upon the development
of random but possibly redundant ordering
relationships, and others which are concerned
only with the creation of random covering
relationships. The p-methods is the former
type because it -creates random posets by
considering all possible connections between
the elements (this closely matches the data
flow model of a task system, not necessarily
its precedence structure). It requires that
data be encoded internally in the form of an

adjacency matrix where,

My Y2 B3 . Ny o

a, W

Az A2 A23 . A2 e A2,
M Mz Ay e By .. B

MW A2 B e B e B

L M B Ay e B .. B

where,
a; = 1 when a;—a; (a;>a; for posets):

a; = 0 otherwise,

The p-method, assigns zeros to the
diagonal elements and to the elements that
make up the lower triangular portion of the
matrix, This assures that the resulting graph
will be acyclic in nature, possessing no self-
loops or loops between other elemerits. The
method then considers, in a row-by-row
sequence, each of the remaining upper
triangular elements and assigns a value of one
or zero based upon the value of a random
number generator, A more precise way of
describing the method is shown below :

A: A3 e By N, \
Lo B2
0 0 ... 2y .. 3,

oo
°
Ceg
£

0 0 0 ... 3 .. &

for each (i, j),
a; = 1 when i<jArand( ) < P.

a; = 0 otherwise.

Here the rand() function returns an
evenly distributed random value between the
value of 0 and 1. The value of p is a
probability constant which is set at the start
of the process, to represent the probability at

each of creating an are between two
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vertices. A probability constant of one
creates. a chain and a zero assures an
antichain; any - value- in between results in
an. indeterminate type of structure,

V. Empirical Analysis

Employing this technique, random. graphs
of varying sizes have been constructed using
values of p that vary over the range of 0 to
1 in steps of 00l. For each value of p, the
three alignment functions have been
computed for each poset in a sample
consisting of 1000 random structures and the
sample mean and variance have been
recorded. These are' shown 1n the figures that
follow(Figure 2-7) for posets of sizes n=10,
n=30, n=50, n=70, and n=90, where n=|P|,
It is interesting to note that thé figures of all
three alignment functions are very simi]ér to
one another. This reflects their general utility
and accuracy in approximating the chaininess
of poset structures.

From these figures, several general
observations can be made. First as the size
of poset, n=|P|, increases the figures that
show the mean value of the alignment
functions each have a progressively smaller
and sharper transition region between values
that reflect chain-like poset behavior and
those dominated by antichain-like properties,
(It should be noted that the threshold

(Figure 2) Mean for Random Posets

—— —— - — O

(Figure 3) Variance for random Posets
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(Figure 5) Variance for random Posets

s P s ¢ i - aEme) @ &

Posets

(Figure 7) Variance A;[h,, by, a,l for
Random Posets
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behavior described by these figures is not an
uncommon phenomenon, it is similar to that
displayed by other random processes in the
area of graph theory and partially-ordered
sets). This means that generating posets in
the mtermediate range(somewhere between
chains and antichains) requires an
increasingly  careful selection of the value of
p. The tendency of many researchers that
have used this method has been to chose
values of p that are too large, resulting in a
sample of posets being produced that are
dominated ‘by‘ chain-like posets. Such
domination: is very likely to adversely affect
the results of any statistical analysis.

It is also apparent that the value of p in
the figures is closely correlated with the size
of the poset mn that as n increases, the p
value with the greatest variance becomes

progressively smaller. For each value of n,

“the value of p with greatest variance occurs

within the . antichain/chain. transition region,
This seems reasonable given the fact that
the point of maximum variance is where the
widest range of poset structures are possible.
It can be proven that for any given value of
p, 0 { p < 1, when n approaches infinity
the value of all three alignment functions
each approach one [4]. The product n-p,
however, appears to be bounded by a
constant. From the figures, the relationship
n'p = 2 appears to always approximate the

point of greatest variance. Assuming this
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conjecture is. correct, the value of p can be
determined directly from the size of the
poset. This could be of major significance in
effectively employing this method to
evaluate  allocation methodologies and
applying it to other problem domains,
Another observation is that as n
increases, the magnitude of the variance
decreases. It can also be seem from the
figures that  for the curves that represent
posets larger than n=30 elements, the
graphs of the meéan and variances tend to
be smooth, indicating that they are not
suffering from the effects of small sampling
size, For this reason, it is wise to only
generate random posets of sizes greater than
40 elements - when testing allocation
methodologies. This is not a major problem
since the large size systems provide more

opportunity for parallel processing.

. Conclusions and Future
Research

The major problem with the p-method of
generating acyclic directed graphs is that for
most values of p the directed graphs that
are produced are either very chain-like or
very antichain-like, With the p-method the
more interesting structures that are produced
lie’ within a very narrow antichain/chain
transition” region. This region becomes even

sharper for the larger acyclic directed graphs.

Unfortunately it is a common mistdke of
many researchers to select values of p that
are too large causing the popuiation of
directed graphs to-become biased in favor of
chains. The value of p that defines the
center of the antichain/chain transition
region appears to be very;‘ closely vcorrélate'd
with the number of vertices in the directed
graphs, If the conjecture that n:p =
constant is true then the utility of this
method for use in the evaluation of
allocation methodologies (and ~many other
problem domain_s) i_s greatly increased.
Otherwisé, other méthods of generating
directed graphs may be superior to the p-
method for this application.',

Two - additional methods of generating
randbm acyclic structures merit future
reseaich, ‘They include methods based-'upén
the intersection of randomly-generated linear
ord'éringé[S'-'G] and the so;called box
methods{7]. Initial empirical results slow that
slight alterations qf the original methods can
lead to much larger antichain/chain

transition regions.
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