Journal of Korean Institute of surface Engineering Vol. 29, No. 6, Dec., 1996

EFFECT OF PARAMAGNETIC CO₅₇Cr₃₃ UNDERLAYER ON CRYST-ALLOGRAPHIC AND MAGNETIC CHARACTERISTICS OF Co-Cr-Ta LAYERS IN PERPENDICULAR MAGNETIC RECORDING MEDIA

Kyung-Hwan KIM*, Shigeki NAKAGAWA, Seiryu TAKAYAMA and Masahiko NAOE

Dept. of Physical Electronics, Tokyo Institute of Technology 2-12-1 O-okayama, Meguro, Tokyo 152, JAPAN *Dept. of Electrical Electronics, Kyung Won University San 65, Bokjung, Soojung, Seong Nam, Kyung Gi 461-701, KOREA

ABSTRACT

The bi-layered films composed of Co-Cr-Ta layers and paramagnetic $Co_{67}Cr_{33}$ underlayer were deposited by suing Facing Targets Sputtering(FTS). The effects of $Co_{67}Cr_{33}$ underlayer on the crystallographic and magnetic characteristics of the Co-Cr-Ta layer deposited on the underlayer was investigated. The diffraction intensity $I_{p(002)}$ of Co-Cr-Ta layers on the $Co_{67}Cr_{33}$ layer was stronger than that of single layer and Co-Cr-Ta/Ti double layer. Therefore, the crystallinity of Co-Cr-Ta layer was imporved by the $Co_{67}Cr_{33}$ underlayer rather than Ti ones. However, te coercivity $H_{c\perp}$ of Co-Cr-Ta layers deposited on $Co_{67}Cr_{33}$ underlayer was as low as 250 Oe even at substrate temperature of 220°C. This $H_{c\perp}$ decrease seems to be attributed to the effect of the $Co_{67}Cr_{33}$ underlayer as well as interval time between deposition of the underlayer and the Co-Cr-Ta layer.

INTRODUCTION

The good crystallinity and appropriate coercivity of Co-Cr films are the essential factors to attain high density perpendicular magnetic recording. In general, those of the Co-Cr films have been imporved by using underlayers such as Ti, Ge, etc. Moreover, the (111)plane orientation of fcc crystallites in the Ni-Fe back-layer have been imporved using the paramagnetic Co₆₇Cr₃₃ underlayer porposed in previous work. These results suggest that the Co₆₇Cr₃₃ underlayer can imporve the crystallinity of Co-Cr recording layer. In this study, the effects of the para-

magnetic $Co_{67}Cr_{33}$ underlayer on the crystallographic and magnetic characteristics of Co-Cr-Ta layers were investigated.

EXPERIMENTS

The Co₈₀Cr₁₇Ta₃ single layer, Co₈₀Cr₁₇Ta₃/Ti and Co₈₀Cr₁₇Ta₃/Co₆₇Cr₃₃ bi-layers structure were deposited on glass slide substrates using Facing Targets Sputtering(FTS) apparatus. The Ar gas pressure P_{AR} during deposition of the Co-Cr-Ta layers was fixed at 0.3 mTorr. P_{AR} during deposition of paramagnetic Co₆₇Cr₃₃ and Ti underlayers were also fixed at 0.3 mTorr. The thicknesses of Co-Cr-Ta layers

and underlayers were 20nm and 20nm, respectively. The substarte temperature T_s during deposition of the Co-Cr-Ta layers were varied in the range from Room Temperature (R.T.) to 270°C. The substrate temperature during deposition of the Co₆₇Cr₃₃ layer T_{us} were R.T. or 220°C. Ti underlayer were deposited at T_{us} of 220°C. In addition to these films, the 20nm-thick Co-Cr-Ta layer was deposited which includes 20nm-thick initial growth layer prepared in mixture gas of N_2 and Ar at T_s of 220°C. Here, this initial growth layer was defined as Co-Cr-Ta: N layer.

The total pressure $P_{N2}+P_{Ar}$ and N_2 partial pressure P_{N2} were 1 mTorr and 0.1 mTorr, respectively. The Co-Cr-Ta layer was deposited at P_{Ar} of 1 mTorr and T_s of 220°C. The crystallographic characteristics were evaluated by X-ray diffractometry(XRD). The magnetic characteristics were determined using Vibrating Sample Magnetometer(VSM) and Kerr hysteresis tracer.

RESULTS AND DISCUSSION

Fig. 1 shows the substrate temperature T_s dependences of X-ray diffraction intensity $I_{p(002)}$ of Co(002) plane on substrate temperature T_s for Co-Cr-Ta single layers, Co-Cr-Ta/Ti and Co-Cr-Ta/Co₆₇Cr₃₃ double layer, respectively. $I_{p(002)}$ of the Co-Cr-Ta layer deposited on the Co₆₇Cr₃₃ underlayer at T_{us} of R. T. was stronger than those of the Co-Cr-Ta single layer and Co-Cr-Ta/Ti double layer at any T_s . The crystallinity of the Co-Cr-Ta layer was improved, since the Co-Cr-Ta layer grew homo-epitaxially on the Co₆₇Cr₃₃ layers and possessed thinner initial growth

Fig. 1 T_s dependences of X-ray diffraction intensity $I_{p(002)}$ of single layer and double layers.

layer, which exhibited worse c-axis orientation and lower perpendicular coercivity. ^[3] On the other hand, $I_{p(002)}$ of Co-Cr-Ta layers on the Ti underlayers were slightly stronger than that of single layer deposited at T_s between 180 and 220°C.

The effect of the Co67Cr33 underlayer on the magnetic characteristics was investigated. Fig. 2 shows the T_s dependences of $H_{c\perp}$ of single layers and double layers. H_{c⊥} of the single layers, increased with increase of T_s in the range above 150°C and took a high value of about 1500 Oe at T_s of 220°C. $H_{c\perp}$ of the Co-Cr-Ta/Ti double layer also increased with increase of T2 in the range above T2 of 180℃. It seems that the change of the threshold value of coercivity is attributed to the interval time between thedeposition of Co-Cr-Ta and Ti layer. The impurity, such as O₂, N₂ and H₂O, seems to be adhered to the surface of the Ti underlayer during this interval. So, the impurity seems to diffuse in the thickness direction during deposition of the Co-Cr-Ta

Fig. 2 T_s dependences of perpendicular coercivity H_{c+} in single layer and double laryer.

Fig. 3. Kerr hysteresis loops in the Co-Cr-Ta single layer and the Co-Cr-Ta/Co₆₇Cr₃₃ double layers

layer. It seems that these layers should be deposited without interval.

On the other hands, H_c of the Co-Cr-Ta/Co₆₇Cr₃₃ double layer remained at low value about 200 Oe even at T₂ of 220°C as shown in Fig. 2. This value of H_c was much lower than the of the Co-Cr-Ta single layer 1500

Table 1. Relationshis between coercivity and configuration of specimens deposited under various condition.

	without $Co_{67}Cr_{33}$ underlayer $T_s=220^{\circ}C$	with $Co_{67}Cr_{33}$ underlayer T_s =220°C T_{us} =R.T.
No N ₂ addition	Co-Cr-Ta $H_{c,l}=1500 \text{ Oe}$	Co-Cr-Ta $Co_{67}Cr_{33}$ $H_{c,l}=250 \text{ Oe}$
N ₂ addition to initial growth layer	Co-Cr-Ta Co-Cr-TaN $H_{c,l}$ =1070 Oe	Co-Cr-Ta Co-Cr-Ta:N Co-Cr-Ta:N Co-Cr-Ta:N H _{c.1} =600 Oe

Oe. Furthermoer, the M-H $_{\perp}$ hysteresis loops with a sharp shoulder was observed even at T_2 of 220°C as shown in Fig. 3. These results suggested that the compositional separation into Co-rich and Cr-rich regions was not caused. The drastic decrease of $H_{c\perp}$ seems to be attributed to the effect of $Co_{67}Cr_{33}$ underlayer in addition to interval time effect between deposition of the underlayer and the Co-Cr-Ta layer.

Then, the Co-Cr-Ta: N layer was deposited on the Co₆₇Cr₃₃ underlayer in order to clarify the effect of Co₆₇Cr₃₃ layer on the Co-Cr-Ta layer. Table 1 lists the relationships between coercivity and configurations of the specimens, deposited under various sputtering condition. $H_{c\perp}$ of the Co-Cr-Ta/Co₆₇Cr₃₃ double layer was lower than that of the layer without Co₆₇Cr₃₃ underlayer regardless of the existence of Co-Cr-Ta: N layer. It should be noted that $H_{c\perp}$ changed from 250 Oe to

600 Oe by insertion of the Co-Cr-Ta: N layer on the $Co_{67}Cr_{33}$ underlayers. The addition of N_2 to initial growth layer seems to suppress the effect of $Co_{67}Cr_{33}$ underlayer. This result implies that the $Co_{67}Cr_{33}$ underlayer has the effect to suppress the incrase of the perpendicular coercivity $H_{c\perp}$.

CONCLUSION

The effect of paramagnetic $CoCo_{67}Cr_{33}$ underlayer on the crystallographic and magnetic characteristics of Co-Cr-Ta layer was investigated. It was found that the crystallinity of the Co-Cr-Ta layer was improved by using Co_{67} Cr_{33} underlayer. However, the coercivity remained low value of 250 Oe even at

substrate temperature T_s as high as 220°C. The decrease of coercivity seems to be attributed to the effect of the $\text{Co}_{67}\text{Cr}_{33}$ underlayer as well as interval time between deposition of the underlayer and the Co-Cr-Ta layer.

REFERENCES

- M. Futamoto, Y. Honda, H. Kakibayashi and K. Yoshida, IEEE Trans. Magn., MAG -21, No. 5, 1462~1428 (1985)
- 2. S. Nakagawa, T. Ichihara and M. Naoe, IEEE Trans. Magn., Vol. 30, No. 6, $4020 \sim 4022 \ (1994)$
- E. R. Wuori and J. H. Judy, IEEE Trans. Magn., MAG-20, No. 5, 774~775 (1984)