Syıthetic Studies on Carbapenam Skeletons

Yang Mo Goo ${ }^{\dagger}$, Min Hyo Seo, and Youn Young Lee*
Department of Chemistry and ${ }^{\dagger}$ Department of Pharmacy, Seoul National University, Seoul 15I-742, Korea
Received June 15, 1996

Abstract

Syntheses of carbapenam skeletons were achieved from 1,3-propanediol through 1,3-dipolar cycloaddition. 3-(Tetrahyd-ropyran-2-yloxy)-(10) and 3-(t-butyldimethylsilyloxy)propanal (13) were obtained from 1,3-propanediol. 3-Hydroxypropanals $(10,13,14)$ were reacted with N-hydroxyglycine esters to give C-(2-hydroxyethyl)- N-alkoxycarbonylmethylnitrones (15a-15d). 1,3-Dipolar cycloaddition of the nitrones with methyl acrylate or ethyl crotonate gave 3-(2-hydroxyethyl)isoxazolidines ($16 \mathrm{a}-16 \mathrm{~b}, 17 \mathrm{a}-17 \mathrm{~b}, 18,19 \mathrm{a}-19 \mathrm{~b}$). 3-(2-Hydroxyethyi)isoxazolidines (17a, 17c, 19a, 19b) were converted to 3 -(2-iodoethyl)isoxazolidines (21a-21d) or 3-phenylthiocarbonylmethylisoxazolidines ($\mathbf{2 5 a - 2 5 d}$) which were cyclized to give 2 -oxa-1-azabicyclo[3.3.0] octanedicarboxylates (22a-22d, 26a-26d), 2-Oxa-1-azabicyclo[3.3.0]octane-4,8-dicarboxylates ($2 \mathbf{2 c}-\mathbf{2 2 d}, \mathbf{2 6 c}-26 \mathrm{~d}$) were transformed to 6-(1-hydroxyethyl)carbapenam-3-carboxylates (30a-30h, 31a-31b).

Introduction

Thienamycin (1) has a unique structure and shows broad and strong antimicrobial activity. ${ }^{1.2}$ Many synthetic studies, therefore, have been carried out to obtain structural analogs of thienamycin. A lot of synthetic strategies have been invented to give carbapenem skeletons which have the desired stereochemically defined functional groups. One of the synthetic approaches was through 1,3-dipolar cycloaddition of crotonates with nitrones to give isoxazoline derivatives, which were transformed to carbapenems. ${ }^{3.4}$

We have been involved in the development of new synthetic methods of cartapenem analogs. Retrosynthetic analysis of the thienamycin structure indicated that the carbapenem skeleton could be obtained through an important intermediate, 3-methyl-7-oxo-2-oxa-1-azabicyclo[3.3.0]ocatane-4,8-dicarboxylate (2). We presumed that we could obtain the compound through 1,3 -dipolar cycloaddition of C-(2-hydroxye-thyl)- N-alkoxycarbonylmethylnitrone (3) with crotonate (Scheme 1). Thus, the present study deals with preparation of 2-oxa-1-aza-bicyclo[3.3.0]octane derivatives and conversion of these products to carbapenems (4).

Results and Discussion

Synthesis of C -(2-hydroxyethyl)- N -alkoxycarbonylmethylnitrones. The hydroxy group of 3-hydroxypropanal was easily eliminated to give acrolein. ${ }^{5}$ Thus, we tried to synthesize 3-hydroxypropanal derivatives in which the 3-hydroxy group was protected with benzoyl, t-butyldimethylsilyl or tetrahydropyran-2-yl group. 1,3-Propanediol (5) was treated with benzoyl chloride to give 3 -benzoyloxy-1-propanol (6) and 1,3-dibenzoyloxypropane (7) in the yields of 59% and 20%, respectively. The compound 6 was reacted with 3,4 -dih-ydro- $2 H$-pyran to give 1-benzoyloxy-3-(tetrahydropyran-2yloxy)propane (8) in 92% yield. The benzoyl group of 8 was removed in 96% yield by treatment of sodium methoxide. The product, 9 was oxidized with PCC to give 3 -(tetrahydro-pyran-2-yloxy)propanal ($\mathbf{1 0}$) in 62% yield. Treatment of 1,3 propanediol with t-butyldimethylsilyl chloride gave 3 - $(t$-butyldimethylsilyloxy)propanol (11) and 1,3-bis(t-butyldimethylsilyloxy)propane (12) in the yields of 52% and 17%, respecti-
vely. Compound 11 was converted to 3 - t-butyldimethylsilyloxy)propanal (13) by Swern oxidation in 82% yield.

In the next step these aldehydes were converted to nitrones by reaction with N-hydroxyamine coumpounds. Thus, we reacted the aldehydes, 10 and 13, and 2,2-dimethyl-3-hydroxypropanal (14) ${ }^{7}$ wtih N-hydroxyglycine ester ${ }^{8}$ to obtain C-(2-hydroxyethyl)- N-alkoxycarbonylmethylnitrones (15a-15d) in 73-90\% yields (Scheme 2). These nitrones showed singlets around 4.41-4.49 ppm for the protons of $\mathrm{NCH}_{2} \mathrm{COOR}$. The $\mathrm{N}=\mathrm{CH}$ proton signals were observed as triplets around 6.50 6.55 ppm for compounds 15 a and 15 b and as singlets around $6.49-6.55 \mathrm{ppm}$ for compounds 15 c and 15 d .

Synthesis of isoxazolidine derivatives. The isoxazolidine derivatives were obtained by 1,3 -dipolar cycloaddition reaction of C -(2-hydroxyethyl)- N -alkoxycarbonylmethylnitrones (15a-15d) with methyl acrylate or ethyl crotonate by refluxing in toluene (Scheme 3). The 1.3 -dipolar cycloaddition reaction gave mixtures of stereoisomers. Thus, the reaction of the nitrones with methyl acrylate gave stereoisomers of

Scheme 1.

Scheme 2.

a) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Mc}$ b) $\mathrm{H}_{3} \mathrm{CCH}=\mathrm{CHCO}_{2} \mathrm{Et}$

16a $R^{1}=H . R^{2}=C_{2} M e, R^{3}=T B S$
$16 \mathrm{~b} R^{I}=H, R^{2}=C_{2} M e, R^{3}=T H P$
$18 R^{I}=\mathrm{CO}_{2} E L, R^{2}=M c, R^{3}=T B S$
c) $\mathrm{R}^{3}=\mathrm{TBS}$; $\mathrm{Bu} \mathrm{N}^{*} \mathrm{~N}^{*} \mathrm{~F}, ~ \mathrm{R}^{3}=\mathrm{THP}$; PPTSEIOH

Scheme 3.
isoxazolidine-5-carboxylates (16a, 16b, 17a, 17b); whereas the reaction of those with ethyl crotonate gave stereoisomers of isoxazolidine-4-carboxylates (18, 19a, 19b). Compound 19a had cis-configuration between the substituents at $\mathrm{C}-3$ and $\mathrm{C}-4$ on the isoxazolidine ring. However, the compounds 18 and 19b were composed of two isomers having cis and trans configurations in the ratios of $4: 1$ and $2: 3$, respectively. Attempts to isolate these isomers by silica gel column chromatography were unsuccessful. But, when the isoxazolidine rings were opened and recyclized, only the compounds having cis configuration were known to cyclize to β-lactam rings. Thus, we proceeded to the next steps without further purification of these isomers. The silyl protecting group of compounds 16a and 18 were removed by treatment of tetrabutylammonium fluoride to give 17 c and 19 c in 92% and 88% yields, respectively, and the tetrahydropyran- 2 -yl protecting group of 16 b by treatment with catalytic amounts of

$17 \mathrm{c} \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}$ 19c $\mathrm{Rl}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me}$
P; PPTS/EIOH

20a $\mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}$
20b $\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}$
20c $\mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{3}=\mathrm{Me}$
$20 \mathrm{~N} \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{3}=\mathrm{Me}$

Scheme 5.

a) $\mathrm{Zn} / \mathrm{HOAc} \quad$ b) TBSCl , imidazole / DMF c) MeMgBr

Scheme 6.
thod. Thus, compounds 29 were treated with methylmagnesium bomide to obtain the cyclized products, 6 -(1-hydroxyethyl) carbapenam-3-carboxylates ($\mathbf{3 0}, \mathbf{3 1}$). For compound 26 their 7 -oxo groups were to be protected. Thus, compound 26c and 26d were refluxed in toluene with ethylene glycol in the presence of p-toluenesulfonic acid to transform the 7 -oxo groups to ketals. The ketal derivatives, $27 a$ and $27 b$ were obtained in 81 and 78% yields, respectively.

Reduction of the N-O bond of compounds 22 and 27 was achieved with zinc powder in glacial acetic acid and 5-(1-ethoxycarbonyl-2-hydroxypropyl)proline esters (28a-28d) were obtained in 72.86% yields. Compound $\mathbf{2 8}$ showed strong

a) $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$. TsOH b) $\mathrm{Zn} / \mathrm{HOAc}$
c) TESCl, imidazole / DMF
d) MeMgBr e) $65 \% \mathrm{HCl}_{4}$

Scheme 7.

absorption band at $3500-3100 \mathrm{~cm}^{-1}$ in the IR spectrum due to the hydroxy and the amino groups. The hydroxy groups of compounds 28a-28d were protected with t-butyldimethylsilyl group. The t-butyldimethylsilyl derivatives, 5 -[1-ethoxy-carbonyl-2-($($-butyldimethylsilyloxy)propyl]proline esters (29 a-29d) showed bands at $3300 \mathrm{~cm}^{-1}$ in their IR spectra due to their amino groups. No hydroxy group band was observed and the $\mathrm{Si}-\mathrm{CH}_{3}$ band was shown at $1255 \mathrm{~cm}^{-1}$. Cyclization of compounds 29a-29d was carried out with methylmagnesium bromide and 6-[1-(t-butyldimethylsilyloxy)ethyl]carba-penam-3-carboxylaes ($\mathbf{3 0} \mathrm{a}-30 \mathrm{~d}$) were obtained in $42-61 \%$ yields. The protecting groups of compounds 30c and 30d were removed with 60% perchloric acid and 6-[1-(t-butyldimethyl-silyloxy)ethyl]-2-oxocarbapenam-3-carboxylates (31a, 31b) were obtained in 85% and 88% yields, respectively. Compounds $\mathbf{3 0}$ and $\mathbf{3 1}$ showed in their ir spectra a β-lactam carbonyl band at $1760-1770 \mathrm{~cm}^{-1}$.

Experimental

IR spectra were recorded with Perkin-Elmer 735-B IR or Jasco J-0068 FT IR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained with Varian EM-360 (60 MHz), Bruker AC 80 (80 MHz) or Varian VXR-200S (200 MHz) NMR spectrometer with tetramethylsilane (TMS) as an internal standard. Chemical shifts are expressed as δ (ppm). Melting points were obtained with digital melting point measurement instrument made by Electrothermal Co. without correction. THF and ethyl ether were distilled in the presence of sodium and benzophenone. Benzene was washed with concentrated sulfuric acid and distilled over sodium. DMF was dried over

KOH pellets before use. Other solvents are 1st grade and distilled before use. All the chemicals were purchased from Aldrich Chemical Co. or Merck Co.

3-Benzoyloxy-1-propanol (6). To the chloroform solution (150 mL) of 1,3-propanediol ($7.61 \mathrm{~g}, 0.10 \mathrm{~mol}$) and pyridine ($8.9 \mathrm{~mL}, 0.11 \mathrm{~mol}$) cooled in the $0{ }^{\circ} \mathrm{C}$ ice bath was added benzoyl chloride ($14.1 \mathrm{~g}, 0.10 \mathrm{~mol}$) slowly and the solution was stirred for 6 h at the same temperature. The reaction mixture was poured into water (150 mL). The chloroform layer was separated, washed with 5% hydrochloric acid, 10% sodium bicarbonate solution and water, dried over anhydrous magnesium sulfate, and rotary-evaporated to give a colorless residue which was chromatographed over a silica gel column with hexane-ethyl acetate ($6: 1$) to give 1,3-dibenzoyloxypropane ($7, R_{f}=0.82$, hexane-ethyl acetate ($4: 1$)) and the desired product ($6, R_{i}=0.19$, hexane-ethyl acetate ($4: 1$)). Yield, $10.76 \mathrm{~g}(59.8 \%)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.00\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{OH}\right)$, $3.76\left(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.49\left(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, 7.48 (m, 3H, Ph), 8.04 (m, 2H, Ph); IR (neat) $3400,3100-2980$, $1740,1590,1180 \mathrm{~cm}^{-1}$.

1,3-dibenzoyloxypropane (7). Yield, 5.68 g (20\%); 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.49(\mathrm{t}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}$, $20 \mathrm{CH}_{2}$), 7.48 (m, $6 \mathrm{H}, \mathrm{Ph}$), 8.04 (m, 4H, Ph); IR (neat), 3100 2980, $1740,1590,1190 \mathrm{~cm}^{-1}$.

1-Benzoyloxy-3-(tetrahydropyran-2-yloxy)propane (8). The solution of 3-benzoyloxy-1-propanol ($9.00 \mathrm{~g}, 50$ mmol), 3,4-dihydro- $2 H$-pyran ($4.29 \mathrm{~g}, 51 \mathrm{mmol}$) and catalytic amounts of p-toluenesulfonic acid ($0.95 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (150 mL) was stirred for 12 h at room temperature. After the reaction mixture was treated with sodium bicarbonate (2 g), it was rotary-evaporated to give an oily residue. The residue was dissolved in diethyl ether and the ether solution was washed with 5% sodium bicarbonate solution, dried over anhydrous magnesium sulfate, and rotary-evaporated to give a colorless liquid. Yield, $12.14 \mathrm{~g}(92 \%)$; ${ }^{\prime} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.43-1.67\left(\mathrm{~m}, 6 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{3}\right), 2.06\left(\mathrm{~m}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.45(\mathrm{t}, 2 \mathrm{H}, J=6.1$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{OCO}$), $4.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OCHO}-), 7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph})$, 8.03 (m, 2H, Ph); IR (neat) $3040-2980,1740,1590,1180 \mathrm{~cm}^{1}$.

3-(Tetrahydropyran-2-yloxy)-1-propanol (9). Sodium methoxide ($4.37 \mathrm{M}, 10.3 \mathrm{~mL}, 44.7 \mathrm{mmol}$) dissolved in methanol was added to the solution of 1-benzoyloxy-3-(tetrahydro-pyran-2-yloxy)propane ($11.88 \mathrm{~g}, 45 \mathrm{mmol}$) in methanol (100 mL) which was cooed to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath and the mixture was stirred for 6 h at room temperature. After evaporation of the solvent, the reaction mixture was dissolved in ethyl acetate (100 mL). The ethyl acetate solution was washed with water (100 mL), dried over anhydrous magnesium sulfate, and rotary-evaporated to give a colorless liquid which was chromatographed over a silica gel column with hexane-ethyl acetate ($2: 1$). Yield, 6.91 g (96%); 'H NMR $\left(\mathrm{CDCl}_{3}\right) \& 1.43-1.67\left(\mathrm{~m}, 6 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{3}\right), 2.00\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{OH}\right)$, $3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.55-3.90\left(\mathrm{~m} 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 4.60(\mathrm{~m}, 1 \mathrm{H}$, -OCHO-); IR (neat) $3500,2990,1180 \mathrm{~cm}^{-1}$.

3-(Tetrahydropyran-2-yloxy)propanal (10). 3-(Tetra-hydropyran-2-yloxy)-1-propanol ($4.0 \mathrm{~g}, 25 \mathrm{mmol}$) dissolved in methylene chloride (20 mL) was poured into the pyridinium chlorochromate ($6.47 \mathrm{~g}, 30 \mathrm{mmol}$) suspended in methylene chloride (30 mL) with vigorous stirring. The mixture was stirred for 4 h at room temperature. After dilution of
the reaction mixture with diethyl ether (100 mL) , the black residue was removed by passing through a short silica gel column. The colorless eluent was evaporated and the residue was chromatographed over a silica gel column with hexaneethyl acetate ($2: 1$). Yield, $2.50 \mathrm{~g}(62 \%)$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.43-1.67\left(\mathrm{~m}, 6 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{3}\right), 2.65(\mathrm{dt}, 2 \mathrm{H}, J=6.0,2.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CO}$), $3.50-3.90\left(\mathrm{~m}, 4 \mathrm{H}, 2 \quad \mathrm{CH}_{3} \mathrm{O}\right) .4 .60$ (br s. 1 H , -OCHO-), $9.75(\mathrm{t}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{CHO}$); IR (neat) 2990,2840 , $2720,1725,1125 \mathrm{~cm}^{-1}$.

3-(t-Butyldimethylsilyloxy)-1-propanol (11). After t-butyldiemethylsilyl chloride ($7.5 \mathrm{~g}, 0.05 \mathrm{~mol}$) was added to the solution of 1,3 -propandiol ($3.81 \mathrm{~g}, 0.05 \mathrm{~mol}$) and imidazole ($4.79 \mathrm{~g}, 0.074 \mathrm{~mol}$) in DMF (70 mL), which was cooled to $0{ }^{\circ} \mathrm{C}$ in ice-water bath, the mixture was stirred for 6 h at the same temperature. The reaction mixture was diluted with diethyl ether (150 mL) and poured into water (100 mL). The ether layer was separated, washed with 5% hydrochloric acid solution, 10% sodium bicarbonate solution and water, dried over anhydrous magnesium sulfate, and rotary-evaporated to give a colorless liquid which was chromatographed over a silica gel column with hexane-ethyl acetate ($8: 1$) to give 1,3 -bis(t-butyldimethylsilyloxy)propane ($\mathbf{1 2}, R_{f}=0.92$ he-xane-ethyl acetate ($4: 1$) and 3 -(t-butyldiemthylsilyloxy)-1propanol ($11, R_{f}=0.21$ hexane-ethyl acetate ($4: 1$). Yield, 4.92 g (52%); ' ${ }^{1} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 80.02\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{SiCH}_{3}\right), 0.87$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.00\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{OH}\right), 3.76(\mathrm{t}, 2 \mathrm{H}, J=6.1$ $\mathrm{Hz}, \mathrm{OCH}_{2}$), $4.49\left(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$; IR (neat) 3400 , $2980,1255,1180,1100,860 \mathrm{~cm}^{-}$.

1,3-bis(t-Butyldimethylsilyloxy)propane (12). Yield. $2.6 \mathrm{~g}(17 \%)$: 'H NMR (CDCl_{3}) $\delta 0.02$ ($\mathrm{s}, 12 \mathrm{H}, 4 \mathrm{SiCH}_{3}$), 0.87 (s, $\left.18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.00\left(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.76(\mathrm{t} .4 \mathrm{H}$. $J=6.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2}$); IR (neat) $2980,1255,1180,1100,860$ cm .

3-(t-Butyldimethylsilyloxy)propanal (13). After DMSO (2.55 mL .33 mmol) was added slowly to the solution of oxalyl chloride ($1.5 \mathrm{~mL}, 16.5 \mathrm{mmol}$) in methylene chloride (25 mL) in dry ice-acetone bath compound $11(2.85 \mathrm{~g}, 15$ mmol) dissolved in methylene chloride (10 mL) was dropped into this solution slowly over 5 min and the mixture was stirred for 15 min . Triethylamine (10.5 mL .75 mmol) was added and the mixture was stirred for 1 h . The reaction mixture was warmed up to the room temperature and poured into water (75 mL). The methylene chloride layer was separated and washed with 1% hydrochlorid acid solution. 5% sodium bicarbonate solution, and water. dried over anhydrous magnesium sulfate, and rotary-evaporated to give a colortess liquid which was chromatographed over a silica gel column with hexane-ethyl acetate ($8: 1$). Yield, $2.30 \mathrm{~g}(82 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{SiCH}_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right)$, 2.65 (dt. $2 \mathrm{H}, J=6.0,2.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$) , 3.84 (t. $2 \mathrm{H}, J=6.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{O}$), 9.75 (t, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{CHO}$); IR(neat) 2990,2840 , $2720,1725,1255,1125,860 \mathrm{~cm}$ '.
\mathbf{N}-[3-(t-Butyldimethylsilyloxy)propylidene]glycine N -oxide \boldsymbol{t}-butyl ester (15a). 3 -(t-Butyldimethylsilyloxy) propanal ($1.88 \mathrm{~g}, 10.0 \mathrm{mmol}$) dissolved in diethyl ether (100 mL) was added slowly to the mixture of N -hydroxyglycine t-butyl ester ($1.47 \mathrm{~g}, 10.0 \mathrm{mmol}$) and anhydrous caclium chloride (2 g) in diethyl ether (100 mL) which was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath. The reaction mixture was stirred for 1 h at the same temperature and for 30 min at room
temperature. After the reaction mixture was filtered and the filtrate was rotary-evaporated to give a colorless liquid which was chromatographed over a silica gel column with hexaneethyl acetate ($1: 2$). Yield, $2.31 \mathrm{~g}(73 \%)$: 'H NMR (CDCl_{3}) $\delta 0.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.43(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.10-3.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.63(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{O}$), 4.43 (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}$), 6.55 (t. $1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{~N}=$ CH); IR (neat) $2990,2870,1745,1595,1256,1090 \mathrm{~cm}$ '.
\mathbf{N}-[3-(Tetrahydropyran-2-yloxy)propylidene]glycine \boldsymbol{N}-oxdie \boldsymbol{t}-butyl ester ($\mathbf{1 5 b}$). The same procedure as described for the synthesis of comound $15 a$ was employed with N-hydroxyglycine t-butyl ester ($1.47 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 3 -(tet-rahydropyran-2-yloxy)propanal ($1.58 \mathrm{~g}, 10.0 \mathrm{mmol}$). The product was isolated by silica gel column chromatography with hexane-ethyl acetate ($1: 4$). Yieid, $2.10 \mathrm{~g}(73 \%$); 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.23-1.71(\mathrm{~m}, 6 \mathrm{H}, \mathrm{THP}), 2.65$ (m, 2H, $=\mathrm{CCH}_{2}$), $3.40-3.81\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 4.41\left(\mathrm{~s}, 2 \mathrm{H}_{\mathrm{t}}\right.$ $\left.\mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 4.56(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OCHO}), 6.50(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}$, $\mathrm{N}=\mathrm{CH}$); IR (neat) $2990-2730,1740,1590,1340.1300-1150$, $1040 \mathrm{~cm}^{\text {² }}$.
N-(3-Hydroxy-2,2-dimethylpropylidene)glycine N. oxide t-butyl ester ($\mathbf{1 5 c}$). The same procedure as the synthesis of compound 15 a was employed with N-hydroxyglycine t-butyl ester ($2.04 \mathrm{~g}, 13.9 \mathrm{mmol}$) and 2,2-dimethyl-3-hydroxypropanal ($1.42 \mathrm{~g}, 13.9 \mathrm{mmol}$). The product was crystallized from hexane-ethyl acetate ($1: 9$). Yield, $2.41 \mathrm{~g}(75 \%)$; mp $84.5{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$), 1.48 (s, $\left.9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.58$ (br s, $1 \mathrm{H}, \mathrm{OH}$), 3.67 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 4.42 (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}$), 6.49 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}$); IR (KBr) 3500 , $2990,1740,1580,1340,1180,1040 \mathrm{~cm}^{1}$.
\mathbf{N}-(3-Hydroxy-2,2-dimethylpropylidene)glycine \mathbf{N} oxide ethyl ester (15d). The same procedure as described for the synthesis of compound 15a was employed with N -hydroxyglycine ethyl ester ($0.50 \mathrm{~g}, 4.2 \mathrm{mmol}$) and 2,2 di-methyl-3-hydroxypropanal ($0.43 \mathrm{~g}, 4.2 \mathrm{mmol}$). A colorless liquid was isolated by silica gel column chromatography with ethyl acetate. Yield, $0.768 \mathrm{~g}(90 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.12$ (br s, $1 \mathrm{H}, \mathrm{OH}$), $1.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$. $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.57 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $4.20\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{OCH}_{2}\right.$ CH_{3}), 4.49 (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}$), 6.55 ($\mathrm{s}, \mathrm{H}, \mathrm{N}=\mathrm{CH}$); IR (neat) $3500,1745,1605,1420,1205,1040 \mathrm{~cm}{ }^{1}$.

Ethyl 2-(t-butoxycarbonylmethyl)-3-[2-(t-butyldime-thylsilyloxy)ethyl]-5-methylisoxazolidine-4-carboxylate (18). The solution of nitrone $15 a(2.30 \mathrm{~g}, 7.25 \mathrm{mmol})$ and ethyl crotonate (1.24 g .10 .8 mmol) in toluene (40 mL) was stirred at $80-90^{\circ} \mathrm{C}$ for 12 h under nitrogen gas. The reaction mixture was evaporated and chromatographed over a silica gel column with ethyl acetate-hexane $(1: 6)$ to give 18. Yield, $2.12 \mathrm{~g}(68 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}$, $0.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.24\left(\mathrm{t}, 3 \mathrm{H} . J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 1.33 (d, $\left.\left.3 \mathrm{H}, J=6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right)_{3}\right), 1.78$ $\left(\mathrm{m}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.78(\mathrm{dd}, 0.8 \mathrm{H}, J=8.0,5.3 \mathrm{~Hz}, 4-\mathrm{H}), 3.09(\mathrm{dd}$, $0.2 \mathrm{H}, J=8.9,8.7 \mathrm{~Hz}, 4-\mathrm{H}), 3.47-3.78\left(\mathrm{~m}, 5 \mathrm{H}, 3-\mathrm{H}, \mathrm{OCH}_{2}\right.$, $\left.\mathrm{N}-\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 4.12\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.39(\mathrm{~m}, 1 \mathrm{H}$, $5-\mathrm{H}$); IR (neat) $2990,1745,1370,1120,1040 \mathrm{~cm}{ }^{1}$.

Methyl 2-(t-butoxycarbonylmethyl)-3-[2-(t-butyldi-methylsilyloxy)ethyl]isoxazolidine-5-carboxylate (16 a). The same procedure as described for the synthesis of 18 was employed with nitrone 15 a ($2.12 \mathrm{~g}, 6.7 \mathrm{mmol}$) and methyl acrylate ($1.08 \mathrm{~mL}, 12 \mathrm{mmol}$) by stirring at $60-70^{\circ} \mathrm{C}$
for 6 h. Yield, $2.32 \mathrm{~g}(86 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.00(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.50-1.71\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.35-2.63(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.36-3.93$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, 3-\mathrm{H}$), 3.46 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=16.4 \mathrm{~Hz}, \mathrm{NCHCO}_{2}$), 3.76 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$) $3.82\left(\mathrm{~d}_{1} 1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right), 4.57(\mathrm{dd}$, $1 \mathrm{H}, J=7.9,8.2 \mathrm{~Hz}, 5-\mathrm{H}$); IR (neat) $2990,1735,1150,1050$ cm ${ }^{1}$.

Ethyl 2-ethoxycarbonylmethyl-3-(2-hydroxy-1,1-di-methylethyl)-5-methylisoxazolidine-4-carboxylate (19 b). The same procedure as the synthesis of 18 was employed with nitrone $15 \mathrm{~d}(2.03 \mathrm{~g}, 10 \mathrm{mmol})$ and ethyl crotonate ($2.28 \mathrm{~g}, 20 \mathrm{mmol}$) by stirring at $80-90 \mathrm{C}$ for 24 h . Yield, $1.57 \mathrm{~g}(60 \%) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{i}\right) \delta 0.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.23(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}$. $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $1.28\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 2.82$ (dd, 0.6 H , $J=8.9,8.0 \mathrm{~Hz}, 4-\mathrm{H}), 3.08(\mathrm{dd}, 0.4 \mathrm{H}, J=8.8,4.9 \mathrm{~Hz}, 4-\mathrm{H}), 3.42$ ($\mathrm{m}, 1 \mathrm{H}, 3-\mathrm{H}$), $3.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.74(\mathrm{~d}, 1 \mathrm{H}, J=18.2 \mathrm{~Hz}$, $\left.\mathrm{NCHCO}_{2}\right), 3.88\left(\mathrm{~d}, 1 \mathrm{H}, J=18.2 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right), 4.20(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), 4.35-4.60 (m, 1H,5H); IR (neat) $3400,2990,1735$. $1150,1050 \mathrm{~cm}$ '.

Methyl 2-ethoxycarbonylmethyl-3-(2-hydroxy-1,1-dimethylethyl)isoxazolidine-5-carboxylate (17b). The same procedure as described for the synthesis of 18 was employed with nitrone 15 d ($2.03 \mathrm{~g}, 10 \mathrm{mmol}$) and methyl acrylate (1.80 mL .20 mmol) by stirring at $60-70 \mathrm{C}$ for 6 h. Yield, $2.02 \mathrm{~g}(70 \%)$; ! H NMR (CDCl_{3}) $\delta 0.90(\mathrm{~s}, 6 \mathrm{H}, 2$ $\left.\mathrm{CH}_{3}\right) .1 .25\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.54(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H})$, $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.12-3.85\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{HOCH}_{2^{-}}, 3-\mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right)$, $4.18\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.51(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H})$: IR (neat) $3500,2990,1745,1210,1040 \mathrm{~cm}^{1}$.

Ethyl 2-(t-butoxycarbonylmethyl)-3-(2-hydroxy-1,1-dimethylethyl)-5-methylisoxazolidine-4-carboxylate (19a). The same procedure as described for the synthesis of 18 was employed with nitrone $15 \mathrm{c}(2.31 \mathrm{~g}, 10 \mathrm{~mm}(\mathrm{l})$ and ethyl crotonate ($1.71 \mathrm{~g}, 15 \mathrm{mmol}$). Yield. $2.14 \mathrm{~g}(62 \%) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta 1.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. $1.20\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.34(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}$, $5-\mathrm{CH}_{3}$), $1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)\right.$), 2.81 (dd, $1 \mathrm{H}, J=8.9,5.0 \mathrm{~Hz}$, $4-\mathrm{H}), 3.41-3.92\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2}, 3-\mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right.$), 4.19 (q, 2 H . $J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.41(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H})$; IR (neat) 3500,2990 . $1745,1340,1210.1040 \mathrm{~cm}^{1}$.

Methyl 2-(t-butoxycarbonylmethyl)-3-(2-hydroxy-1, 1-dimethylethyl)isoxazolidine-5-carboxylate (17a). The same procedure as described for the synthesis of 18 was employed with nitrone $15 \mathrm{c}(2.23 \mathrm{~g}, 9.65 \mathrm{mmol})$ and methyl acrylate ($1.81 \mathrm{~mL}, 20 \mathrm{mmol}$). Yield, $2.51 \mathrm{~g}(82 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)+1.47$ $\left(\mathrm{s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.59(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.22-$ 3.98 (m, 5H, $3-\mathrm{H}, \mathrm{OCH}_{2}, \mathrm{NCH}_{2} \mathrm{CO}_{2}$), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.51 (dd, $1 \mathrm{H}, J=8.0,8.3 \mathrm{~Hz}, 5-\mathrm{H}$); IR (neat) $3450,2990,1740$. $1370,1210,1160,1050 \mathrm{~cm}$ '.

Methyl 2-(t-butoxycarbonylmethyl)-3-[2-(tetrahyd-ropyran-2-yloxy)ethyl]isoxazolidine-5-carboxylate (16 b). The same procedure as described for the synthesis of 18 was employed with nitrone $\mathbf{1 5 b}(1.00 \mathrm{~g}, 3.47 \mathrm{mmol})$ and methyl acrylate ($0.63 \mathrm{~mL}, 7.0 \mathrm{mmol}$). Yield, $1.00 \mathrm{~g}(82 \%)$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.23-2.05\left(\mathrm{~m}, 6 \mathrm{H}, 3-\mathrm{CH}_{-1}, \mathrm{THP}\right), 1.47(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.51(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.39-3.84(\mathrm{~m}, 7 \mathrm{H}, 3-\mathrm{H}, 2$ $\mathrm{OCH}_{2}, \mathrm{NCH}_{2} \mathrm{CO}_{2}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.48-4.67 (m, 2H,5$\mathrm{H}, \mathrm{OCHO}$); IR (neat) 2990, $1740,1360,1220.1040 \mathrm{~cm}{ }^{\prime}$.

Methyl 2-(t-butoxycarbonylmethyl)-3-(2-hydroxye-thyl)isoxazolidine-5-carboxylate (17c). Method A. The solution of tetrabutylammonium fluoride in THF ($1 \mathrm{M}, 4.0$ $\mathrm{mL}, 4.0 \mathrm{mmol}$) was added to the solution of compound 16 a $(1.29 \mathrm{~g}, 3.2 \mathrm{mmol})$ in THF (5 mL) and stirred for 12 h . The reaction mixture was passed through a short silica gel column and the evaporation of the eluent gave a red colored residue. The residue was dissolved in ethyl acetate (20 mL) and the solution was washed with water, 0.1 N hydrochloric acid solution, 10% sodium bicarbonate solution, and 5% sodium chloride solution in sequences. The ethyl acetate layer was separated, dried over anhydrous sodium sulfate and ro-tary-evaporated to give a red colored liquid which was chromatographed over a silica gel column to give a liquid. Yield, $0.85 \mathrm{~g}(92 \%)$; 'H NMR (CDCl_{3}) $\delta 1.47$ ($\left.\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{\mathrm{h}}\right)$, 1.52$2.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2}\right), 2.36-2.64(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.46(\mathrm{~d}, 1 \mathrm{H}$. $\left.J=16.4 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right), 3.82\left(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right)$. 3.76 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.52(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.74-3.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ 0), 4.57 (dd, $1 \mathrm{H}, J=7.9,8.1 \mathrm{~Hz}, 5-\mathrm{H}$); IR (neat) 3400,2990 , $1740,1340,1190,1040 \mathrm{~cm}^{1}$.
Method B. Compound $16 \mathrm{~b}(1.90 \mathrm{~g}, 5.1 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ was stirred with pyridinium p-toluenesulfonate (0.5 g) at $50{ }^{\circ} \mathrm{C}$ for 4 h . The product was isolated by following the same procedure as described in Method A to give 1.26 g (yield, 86%) of 17 c .

Ethyl 2-(t-butoxycarbonylmethyl)-3-(2-hydroxye-thyl)-5-methylisoxazolidine-4-carboxylate (19c). The same procedure as described for the synthesis of compound 17c in Method A was used to remove the silyl group of compound 18 (1.98 g .4 .6 mmol) with THF solution of tetrabutylammonium fluoride ($1 \mathrm{M}, 5.5 \mathrm{~mL}, 5.5 \mathrm{mmol}$) to give compound 19c. Yield, $1.28 \mathrm{~g}(88 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right)$, $\delta 1.24\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}_{+} \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~d}, 3 \mathrm{H}_{,} J=6.1 \mathrm{~Hz}\right.$, $\left.5-\mathrm{CH}_{3}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.55-1.78\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.14$ (dd, $1 \mathrm{H}, J=8.9,8.7 \mathrm{~Hz}, 4-\mathrm{H}$), $3.47-3.77\left(\mathrm{~m} .5 \mathrm{H}, 3-\mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{O}$), $4.14\left(\mathrm{q}, 2 \mathrm{H} . J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.38(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H})$; IR (neat) $3400,2990,1740,1350,1190,1040 \mathrm{~cm}{ }^{1}$.
Methyl 2-(t-butoxycarbonylmethyl)-3-(1,1-dimethyl-2-tosyloxyethyl)isoxazolidine-5-carboxylate (20a). To the solution of compound $17 \mathrm{a}(0.9 \mathrm{~g}, 2.84 \mathrm{mmol})$ in pyridine $(5.0 \mathrm{~mL})$ which was cooled to 0 C in ice-water bath was added p-toluenesulfonyl chloride ($0.83 \mathrm{~g}, 4.3 \mathrm{mmol}$) under nitrogen gas. The mixture was stirred for 2 h and kept in refregerator for a day. The mixture was poured into crushed ice (20 g) and the aqueous solution was extracted with ethyl acetate ($20 \mathrm{~mL} \times 2$). The extract was washed with 1% hydrochloric acid solution, water, 5% sodium bicarbonate solution, and finally water, dried over anhydrous magnesium sulfate, and evaporated to give a residue which was chromatographed over a silica gel column with hexane-ethyl acetate ($7: 3$). Yield, $0.99 \mathrm{~g}(74 \%)$; ${ }^{\text {'H NMR }}\left(\mathrm{CDCl}_{i}\right) \delta 0.92\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{i}\right)_{2}\right)$, $1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .2 .46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 2.34-2.65(\mathrm{~m}, 2 \mathrm{H}$, $4-\mathrm{H}), 3.15-3.37(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.48\left(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right)$. 3.52 (d, $J=12.3 \mathrm{~Hz}, \mathrm{NCHCO}_{2}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.86 (d , $\left.1 \mathrm{H}, J=9.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 3.94\left(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.48$ (dd, $1 \mathrm{H}, J=8.3,8.0 \mathrm{~Hz}, 5-\mathrm{H}$) 7.32 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{Ar}$), 7.68 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$. Ar); IR (neat) $3100-2990,1740.1600$. $1360,1180,1040 \mathrm{~cm}$ '.
Methyl 2-(t-butoxycarbonylmethyl)-3-(2-tosyloxye-thyl)isoxazolidine-5-carboxylate (20b). The same pro-
cedure as described for the synthesis of 20a was employed with compound $17 \mathrm{c}(1.8 \mathrm{~g}, 6.2 \mathrm{mmol})$ and p -toluenesulfonyl chloride ($1.78 \mathrm{~g}, 9.4 \mathrm{mmol}$). Yield, $2.08 \mathrm{~g}(76 \%)$; ${ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.52-1.71\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right)$, 2.46 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}$), 2.36-2.64 (m, 2H, 4-H), 3.36-3.93 (m, $5 \mathrm{H}, \mathrm{OCH}_{2}, \mathrm{NCH}_{2} \mathrm{CO}_{2}, 3-\mathrm{H}$), 3.76 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.57 (dd, 1 H , $J=8.1,7.9 \mathrm{~Hz}, 5-\mathrm{H}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.68$ (d. 2 H , $J=8.0 \mathrm{~Hz}, \mathrm{Ar}$); IR (neat) $3100-2990,1745,1605,1370,1180$, $960 \mathrm{~cm}^{-1}$.

Ethyl 2-(t-butoxycarbonylmethyl)-5-methyl-3-(1,1-dimethyl-2-tosyloxyethylfisoxazolidine-4-carboxylate (20c). The same procedure as described for the synthesis of 20 a was employed with compound $19 \mathrm{a}(0.53 \mathrm{~g}, 1.52 \mathrm{mmol})$ and p-toluenesulfonyl chloride ($0.45 \mathrm{~g}, 2.3 \mathrm{mmol}$). Yield, 0.56 $\mathrm{g}(74 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.99\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.20(\mathrm{t}$, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.34 (d, $3 \mathrm{H}, J=6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{3}$), $1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 2.81(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $8.8,5.4 \mathrm{~Hz}, 4-\mathrm{H}$). $3.15-3.37(\mathrm{~m}, \mathrm{tH}, 3-\mathrm{H}), 3.64(\mathrm{~d}, 1 \mathrm{H}, J=15.0$ $\left.\mathrm{Hz}, \mathrm{NCHCO}_{2}\right), 3.71\left(\mathrm{c}^{2}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right), 3.80$ (d. $1 \mathrm{H}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), $4.00\left(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}_{z}, \mathrm{CH}_{2} \mathrm{O}\right.$), 4.22 (q, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.45(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}) .7 .33(\mathrm{~d}, 2 \mathrm{H}$. $J=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}) ; \mathrm{IR}$ (neat) 3050 $2990,1745,1605,1380,1180,1040 \mathrm{~cm}$.

Ethyl 2-(t-butoxycarbonylmethyl)-5-methyl-3-(2-tos-yloxyethyl)isoxazolidine-4-carboxylate (20d). The same procedure as described for the synthesis of 20a was employed with compound $19 \mathrm{c}(0.90 \mathrm{~g}, 2.84 \mathrm{mmol})$ and p-toluenesulfonyl chioride ($0.82 \mathrm{~g}, 4.3 \mathrm{mmol}$). Yield, $1.05 \mathrm{~g}(79 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.23\left(\mathrm{t} .3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.45$ $\left(\mathrm{d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$) $), 1.66-2.00$ $\left(\mathrm{m}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 2.93(\mathrm{dd}, 1 \mathrm{H}, J=9.8$, $7.9 \mathrm{~Hz}, 4-\mathrm{H}$), $3.36-3.92\left(\mathrm{~m}, 5 \mathrm{H}, 3-\mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}, \mathrm{OCH}_{2}\right.$), 4.17 $\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.58(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}, \mathrm{Ar}$), $7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}$. Ar); IR (neat) $3100-$ 2990, 1740, 1600, 1360, 1190, $1040 \mathrm{~cm}{ }^{1}$.

Methyl 2-(t-butoxycarbonylmethyl)-3-(2-iodo-1,1-di-methylethyl)isoxazolidine-5-carboxylate (21a). The solution of compound 20 a ($0.84 \mathrm{~g}, 1.79 \mathrm{mmol}$) and sodium iodide ($1.34 \mathrm{~g}, 8.95 \mathrm{mmol}$) in acetone (5 mL) was refluxed for 3 h . After evaporation of acetone the residue was dissolved in diethyt ether (10 mL) and water (5 mL). The ether layer was separated. washed with saturated solution of sodium thiosulfate, and 5% sodium chloride solution, and dried over anhydrous magnesium sulfate. The residue obtained after evaporation of solvent was chromatographed over a silica get column with ethyl acetate-hexane ($1: 5$) to give a colorless crystal. Yield, $0.61 \mathrm{~g}(80 \%): \mathrm{mp} 67 . \mathrm{C}^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.48(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.48-2.68(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.15-4.00\left(\mathrm{~m}, 5 \mathrm{H}, 3-\mathrm{H}, \mathrm{CH}_{2} \mathrm{I}\right.$, $\mathrm{NCH}_{2} \mathrm{CO}_{2}$), 3.75 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.50 (dd. $1 \mathrm{H}, J=7.2,6.6 \mathrm{~Hz}$, $5-H)$; IR (neat) $2990,1745,1370,1210,1160,1040 \mathrm{~cm}$ '.
Methyl 2-(t-butoxycarbonylmethyl)-3-(2-iodoethyl)-isoxazolidine-5-carboxylate (21b). The same procedure as described for the synthesis of 21a was employed with compound 20b (0.93 g .2 .10 mmol) and sodium iodide (1.26 $\mathrm{g}, 8.40 \mathrm{mmol}$). Yield, $0.795 \mathrm{~g}(95 \%)$: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{\mathrm{i}}$) $\delta 1.47$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)$) $), 1.58-2.00\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.48-2.70(\mathrm{~m}, 2 \mathrm{H}$, $4-\mathrm{H}$), $3.15-4.00$ (m, $5 \mathrm{H}, 3-\mathrm{H}, \mathrm{CH}_{2} \mathrm{I}, \mathrm{NCH}_{2} \mathrm{CO}_{2}$), 3.76 (s. $3 \mathrm{H}_{\text {, }}$ OCH_{3}) 4.57 (dd, $1 \mathrm{H}, J=8.1,7.9 \mathrm{~Hz}, 5-\mathrm{H}$); IR (neat) 2990 , $1745,1370,1300-1160,1040 \mathrm{~cm}$.

Ethyl 2-(t-butoxycarbonylmethyl)-3-(2-iodo-1,1-di-methylethyl)-5-methylisoxazolidine-4-carboxylate (21 c). The same procedure as described for the synthesis of 21a was employed with compound 20c ($0.32 \mathrm{~g}, 0.64 \mathrm{mmol}$) and sodium iodide ($0.288 \mathrm{~g}, 1.92 \mathrm{mmol}$). Yield, 0.276 g (95%); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{OCH}_{2}-\right.$ CH_{3}), $1.34\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 2.80 (dd, $1 \mathrm{H}, J=8.8,5.5 \mathrm{~Hz}, 4-\mathrm{H}$), $3.21(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{I}\right), 3.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}, 3 \cdot \mathrm{H}), 3.54(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}$, CH_{2} I), 3.65 (d, $1 \mathrm{H}, J=15.0 \mathrm{~Hz}, \mathrm{NCHCO}_{2}$), 3.71 (d, $1 \mathrm{H}, J=15.0$ $\mathrm{Hz}, \mathrm{NCHCO}_{2}$), 4.22 (q, $2 \mathrm{H} . J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 4.45 (m, $1 \mathrm{H}, 5-\mathrm{H}$); IR (neat) $2990,1740,1370,1160,1040 \mathrm{~cm}$ '.

Ethyl 2-(t-butoxycarbonylmethyl)-3-(2-iodoethyl)-5-methylisoxazolidine-4-carboxylate (21d). The same procedure as described for the synthesis of 21a was employed with compound $20 \mathrm{~d}(1.00 \mathrm{~g}, 2.12 \mathrm{mmol})$ and sodium iodide (1.27 g .8 .48 mmol). Yield, $0.83 \mathrm{~g}(92 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.23\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.44(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}$, $\left.5-\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s} .9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.66-2.00\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.90$ (dd, $1 \mathrm{H}, J=9.8,7.9 \mathrm{~Hz}, 4-\mathrm{H}$), $3.15-3.54\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}, \mathrm{CH}_{2} \mathrm{I}\right)$. $3.64\left(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right), 3.71(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}$, $\left.\mathrm{NCHCO}_{2}\right), 4.18\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{OH}_{2} \mathrm{CH}_{3}\right), 4.58(\mathrm{~m}, 1 \mathrm{H}$, $5-H$); IR (neat) $2990,1740,1360,1205,1040 \mathrm{~cm}^{-1}$.

8-(t-Butyl) 3-methyl 6,6-dimethyl-2-oxa-1-azabicy-clo[3.3.0]octane-3,8-dicarboxylate (22a). Lithium hexamethyldisalazide (THF, $1 \mathrm{M}, 1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to the solution of compound $21 \mathrm{a}(0.427 \mathrm{~g}, 1.0 \mathrm{mmol})$ in THF (5 mL) which was cooled in dry ice-acetone bath. The mixture was stirred for 30 min at the same temperature and for 1 h at room temperature. After addition of 25% ammonium chloride solution, the reaction mixture was extracted with diethyl ether (5 mL). Drying of the extract over anhydrous magnesium sulfate and evaporation of the solvent gave a yellow colored residue which was chromatographed over a silica gel column with hexane-ethyl acetate ($4: 1$). Yield, $0.134 \mathrm{~g}(45 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.10-2.54(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}$, $7-\mathrm{H}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.15-3.80(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}), 4.48$ (m, 1H, 3-H); IR (neat) 2990, 1745, 1340, 1190, $1040 \mathrm{~cm}^{1}$.

8-(t-Buty) 3-methyl 2-oxa-1-azabicyclo[3.3.0]oc-tane-3,8-dicarboxylate (22b). The same procedure as described for the synthesis of compound 22a was employed with lithium hexamethyldisilazide (THF, $1 \mathrm{M}, 1.3 \mathrm{~mL}, 1.3$ mmol) and compound 21b ($0.34 \mathrm{~g}, 0.86 \mathrm{mmol}$). Yield, 0.11 $\mathrm{g}(47 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.50-2.38$ $(\mathrm{m}, 4 \mathrm{H}, 6 \mathrm{H}, 7-\mathrm{H}), 2.38-2.80(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.40-3.75(\mathrm{~m}, 1 \mathrm{H}$, $5-\mathrm{H}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.82(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, 8-\mathrm{H}), 4.57$ (t, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, 3-\mathrm{H}$); IR (neat) $2990,2915,1745,1340$, $1190,1040 \mathrm{~cm}$.

8-(t-Butyl) 4-ethyl 3,6,6-trimethyl-2-oxa-1-azabicy-clo[3.3.0]octane-4,8-dicarboxylate (22c). The same procedure as described for the synthesis of compound 22a was employed with lithium hexamethyldisilazide (THF, 1 M , $1.5 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and compound 21c ($0.45 \mathrm{~g}, 1.0 \mathrm{mmol})$. Yield, $0.25 \mathrm{~g}(77 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.12 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.23 (t, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.43 (d, $3 \mathrm{H}, J=6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{3}$), $1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.90-2.30$ ($\mathrm{m} .2 \mathrm{H}, 7-\mathrm{H}$), 2.83 (dd, $1 \mathrm{H}, J=8.8,5.5 \mathrm{~Hz}, 4-\mathrm{H}), 3.50-4.00$ (m. $2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}$), 4.18 (q. $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 4.50 (m, 1H, 3-H); IR (neat) 2990, 2915, 1745, 1340, 1190, 1040 cm '.

8-(t-Butyl) 4-ethyl 3-methyl-2-oxa-1-azabicyclo[3.3. $0]$ octane-4,8-dicarboxylate (22d). The same procedure as described for the synthesis of compound 22a was employed with lithium hexamethyldisilazide (THF, $1 \mathrm{M}, 2.0 \mathrm{~mL}$. 2.0 mmol) and compound 21c ($0.43 \mathrm{~g}, 1.0 \mathrm{mmol}$). Yield, 0.19 $\mathrm{g}(64 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.23\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 1.43-1.48 (m, 12H, $\left.3-\mathrm{CH}_{3}, \mathrm{C}\left(\mathrm{CH}_{2}\right)_{3}\right) .1 .60-2.33(\mathrm{~m}, 4 \mathrm{H}, 6-\mathrm{H}$, $7-\mathrm{H}), 2.90(\mathrm{dd}, 1 \mathrm{H}, J=9.8,7.9 \mathrm{~Hz}, 4-\mathrm{H}), 3.15-3.50(\mathrm{~m}, 1 \mathrm{H}$, $5-\mathrm{H}), 3.60-4.10(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 4.20\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 4.60 (m, 1H, 3-H); IR (neat) $2990,2915,1745,1340,1200$, $1040 \mathrm{~cm}^{-1}$.
Methyl 2-ethoxycabonylmethyl-3-(1-carboxy-1-me-thylethyl)isoxazolidine-5-carboxlate (23a). After Jones reagent ($1.6 \mathrm{~mL}, 12.8 \mathrm{mmol}$) was added to the solution of compound $17 \mathrm{~b}(0.61 \mathrm{~g}, 2.1 \mathrm{mmol})$ in acetone which was cooled at $0{ }^{\circ} \mathrm{C}$ in ice-water bath, the mixture was stirred at the same temperature for 3 h . After the excess amounts of Jones reagent in the reaction mixture was decomposed with 2 -propanol, the reaction mixture was filterd. The filtrate was diluted with ethyl acetate (10 mL), washed with water ($10 \mathrm{~mL} \times 2$), dried over anhydrous sodium sulfate, and rotaryevaporated to give a yellow liquid. Yield, $0.45 \mathrm{~g}(70 \%)$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30$ (t. $\left.3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.45(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}$, $3-\mathrm{H}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64-4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 4.23$ (q, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 4.57 (dd. $1 \mathrm{H}, J=8.3,7.9 \mathrm{~Hz}$. $5-\mathrm{H}$), 10.2 (br s, $1 \mathrm{H}, \mathrm{COOH}$); [R(neat) $3500-3200,2990,1730$, $1690,1200,1040 \mathrm{~cm}$!.
Methyl 2-(t-butoxycarbonylmethyl)-3-carboxymeth-ylisoxazolidine-5-carboxylate (23b). The same procedure as described for the synthesis of compound 23a was employed with Jones reagent ($0.8 \mathrm{~mL}, 6.4 \mathrm{mmol}$) and compound $17 \mathrm{c}(0.52 \mathrm{~g}, 1.8 \mathrm{mmol})$. Yield, $0.41 \mathrm{~g}(75 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.08-2.85\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$, $3.40(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64-4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}-\right.$ CO_{2}), 4.49 (dd, $1 \mathrm{H} J=8.3,7.9 \mathrm{~Hz}, 5-\mathrm{H}$); 9.63 (br s. 1 H , COOH); IR (neat) $3500-3200,2990,1740,1690,1200,1040$ cm^{-1}.

Ethyl 2•(t-butoxycarbonylmethyl)-3•(1-carboxy-1-methylethyl)-5-methylisoxazolidine-4-carboxylate (23 c). The same procedure as described for the synthesis of compound 23a was employed with Jones reagent (0.5 mL , 4.0 mmol) and compound $19 \mathrm{a}(0.41 \mathrm{~g}, 1.2 \mathrm{mmol})$. Yield, 0.35 $\mathrm{g}(82 \%)$; ${ }^{\text {'H }} \mathrm{H}$ NR $\left(\mathrm{CDCl}_{3}\right) 80.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.28 (t, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $\mathbf{1 . 4 3}$ (d, $3 \mathrm{H}, J=6.5$ $\left.\mathrm{Hz}, 5-\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.93$ (dd, $1 \mathrm{H}, J=9.8,7.9$ $\mathrm{Hz}, 4-\mathrm{H}), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, 3-\mathrm{H}), 3.61(\mathrm{~d}, 1 \mathrm{H}, J=16.3$ $\mathrm{Hz}, \mathrm{NCHCO}_{2}$), 4.13 (d, $1 \mathrm{H}, J=16.3 \mathrm{~Hz}, \mathrm{NCHCO}_{2}$) 4.23 (q, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{OH}_{2} \mathrm{CH}_{3}$), $4.53(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}$), 9.52 (br s. 1 H , COOH); IR (neat) $3500-3200,2990,1745,1690,1200,1040$ cm ${ }^{1}$.

Ethyl 2-(t-butoxycarbonylmethyl)-3-carboxymethyl5 -methylisoxazolidine-4-carboxylate (23d). The same procedure as described for the synthesis of compound 23a was employed with Jones reagent ($0.5 \mathrm{~mL}, 4.0 \mathrm{mmol}$) and compound 19c ($0.32 \mathrm{~g}, 1.0 \mathrm{mmol}$). Yield, $0.26 \mathrm{~g}(78 \%)$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.28\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.44 (d , $\left.3 \mathrm{H}, f=6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$), $2.24(\mathrm{~m}, 2 \mathrm{H}$, $3-\mathrm{CH}_{2} \mathrm{CO}_{2}$), 2.89 (dd, $\left.1 \mathrm{H}, J=10.0,8.0 \mathrm{~Hz}, 4-\mathrm{H}\right), 3.40(\mathrm{~m}, 1 \mathrm{H}$, $3-\mathrm{H}), 3.63\left(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right), 4.13(\mathrm{~d}, 1 \mathrm{H}, J=16.3$ $\left.\mathrm{H} 2, \mathrm{NCHCO}_{2}\right), 4.20\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{OH}_{2} \mathrm{CH}_{3}\right), 4.57(\mathrm{~m}$,
$1 \mathrm{H}, 5-\mathrm{H}$), 10.3 (br s. 1H, COOH); IR (neat) $3500-3200,2990$. $1745,1690,1200,1040 \mathrm{~cm}^{\text {l }}$.

Methyl 2-ethoxycarbonylmethyl-3-(1-methoxycar-bonyl-1-methylethyl)isoxazolidine-5-carboxylate (24 a). Compound 23 a ($0.74 \mathrm{~g}, 2.46 \mathrm{mmol}$) in diethyl ether (10 mL) was treated with an excess amount of diazomethane. After the reaction mixture was treated with acetic acid to decompose the excess amount of diazomethane, it was evaporated and chromatographed over a silica gel column. Yield, $0.72 \mathrm{~g}(92 \%) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.10-1.50\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right)$, $2.60(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.20-4.15\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 3.70$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{4}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.18(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, OCH_{2}), 4.52 (dd, $1 \mathrm{H}, J=7.9,8.3 \mathrm{~Hz}, 5-\mathrm{H}$); IR (neat) 2990 , $1745,1340,1200,1040 \mathrm{~cm}^{\prime}$.
Ethyl 2-(t-butoxycarbonylmethyl)-3-(1-methoxycar-bonyl-1-methylethyl)-5-methylisoxazolidine-4-carboxylate (24b). Excess diazomethane was treated to convert $23 c(0.16 \mathrm{~g}, 0.45 \mathrm{mmol})$ to 24 b . Yield, $0.12 \mathrm{~g}(72 \%)$; 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 1.43\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 1.47$ (s, $9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)$), 2.95 (dd, $\left.1 \mathrm{H}, J=9.8,7.9 \mathrm{~Hz}, 4-\mathrm{H}\right), 3.43$ (d, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}, 3-\mathrm{H})_{+} 3.61\left(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right), 3.72$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.13\left(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right), 4.23(\mathrm{q}$, $\left.2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.53(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H})$; IR (neat) 2990 . 1740, $1340,1200,1040 \mathrm{~cm}^{1}$.
Methyl 2-ethhoxycarbonylmethyl-3-(1-methyl-1-phenylthiocarbonylethyl)isoxazolidine-5-carboxylate (25a). To the solution of compound 23 a ($1.00 \mathrm{~g}, 3.3 \mathrm{mmol}$) in benzene was added oxalyl chloride ($0.42 \mathrm{~g}, 3.3 \mathrm{mmol}$) and pyridine (0.27 mL) and the mixture was stirred for 1 lh at 0 C . After the benzene was evaporated and pyridine (2 mL) and thiophenol ($0.34 \mathrm{ml}, 3.3 \mathrm{mmol}$) was added to the residue. The mixture was stirred for 3 h at room temperature. The reaction mixture was, then, diluted with diethyl ether (10 mL), washed with water, dried over anhydrous sodium sulfate, and rotary-evaporated to give a liquid. Yield, 1.17 g (90%); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.98$ (s. $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.16 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), $1.30\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.45(\mathrm{~m} .2 \mathrm{H}, 4-\mathrm{H})$, $3.40(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.64-4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $4.23\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.3$, $7.9 \mathrm{~Hz}, 5-\mathrm{H}), 7.40(\mathrm{~m}, 5 \mathrm{H} . \mathrm{Ar})$; IR (neat) $3100-2980,1745$, $1720,1600,1360,1200,1040 \mathrm{~cm}^{1}$
Methyl 2-(t-butoxycarbonylmethyl)-3-phenylthiocar-bonylmethylisoxazolidine-5-carboxylate (25b). The same procedure as described for the synthesis of $\mathbf{2 5 a}$ was used with compund 23b ($0.42 \mathrm{~g}, 1.4 \mathrm{mmol}$), oxalyl chioride $(0.13 \mathrm{~mL}, 1.5 \mathrm{mmol})$, and thiophenol ($0.16 \mathrm{~mL}, 1.5 \mathrm{mmol}$). Yield, $0.51 \mathrm{~g}(92 \%)$; 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $2.08-2.85\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.40(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.64-4.13$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.49(\mathrm{dd}, 1 \mathrm{H}, J=8.3$, $7.9 \mathrm{~Hz}, 5-\mathrm{H}), 7.43(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar})$; IR (neat) $3100-2980,1745$, $1720,1590,1360,1200,1040 \mathrm{~cm}^{-1}$.

Ethyl 2-(t-butoxycarbonylmethyl)-5-methyl-3-(1-me-thyl-1-phenylthiocarbonylethyl)isoxazolidine-4-carboxylate (25c). The same procedure as described for the synthesis of 25 a was used with compound $23 \mathrm{c}(0.75 \mathrm{~g}, 2.1$ mmol), oxalyl chloride ($0.20 \mathrm{~mL}, 2.2 \mathrm{mmol}$), and thiophenol $(0.23 \mathrm{~mL}, 2.2 \mathrm{mmol})$. Yield, $0.85 \mathrm{~g}(90 \%)$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~s}, 3 \mathrm{H} . \mathrm{CH}_{3}\right), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.0$ $\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.43 (d, $3 \mathrm{H}, J=6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{3}$), 1.47 ($\mathrm{s}, 9 \mathrm{H}$,
$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.93(\mathrm{dd}, 1 \mathrm{H}, J=9.8,7.9 \mathrm{H} z, 4-\mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}$, $3 \cdot \mathrm{H}$), $3.61\left(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right.$), $4.13(\mathrm{~d}, 1 \mathrm{H}, J=16.3$ $\mathrm{Hz}, \mathrm{NCHCO}_{2}$), $4.23\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.53(\mathrm{~m}$, $1 \mathrm{H}, 5-\mathrm{H}$), 7.43 (m, 5H, Ar); IR (neat) $3100-2980,1745,1720$. $1590,1360.1200 .1040 \mathrm{~cm}^{\prime}$.
Ethyl 2-(t-butoxycarbonylmethyl)-5-methyl-3-phen-ylthiocarbonylmethylisoxazolidine-4-carboxylate (25 d). The same procedure as described for the synthesis of 25a was used with compund 23 d ($0.50 \mathrm{~g}, 1.5 \mathrm{mmol}$), oxalyl chloride ($0.14 \mathrm{~mL}, 1.6 \mathrm{mmot}$), and thiophenol ($0.16 \mathrm{~mL}, 1.6$ mmol). Yield, $0.56 \mathrm{~g}(89 \%)$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{\mathrm{i}}\right) \delta 1.28(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .1 .44\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 1.48$ $\left(\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.24\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}_{2} \mathrm{CO}\right), 2.89(\mathrm{dd}, 1 \mathrm{H}, J=10.0$, $8.0 \mathrm{~Hz}, 4-\mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}$, $\left.\mathrm{NCHCO}_{2}\right), 4.13\left(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}, \mathrm{NCHCO}_{2}\right) .4 .20(\mathrm{q}, 2 \mathrm{H}$, $\left.J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.57(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 7.43(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar})$; IR (neat) $3100-2980,1745,1720,1590,1360,1200,1040 \mathrm{~cm}{ }^{\text {' }}$.
8-Ethyl 3-methyl 6,6-dimethyl-7-oxo-2-oxa-1-azabi-cyclo[3.3.0]octane-3,8-dicarboxylate (26a). Under nitrogen gas environment. lithium hexamethyldisilazide (THF, $1 \mathrm{M}, 2.0 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added to the solution of compound $25 a(0.40 \mathrm{~g}, 1.0 \mathrm{mmol})$ in THF (5.0 mL) which was cooled in dry ice-acetone bath. After the mixture was stirred at the same temperature for 30 min and at room temperature for 1 h . it was treated with 1 N ammonium chloride solution and extracted with diethyl ether (10 mL). The ether extract was dried over anhydrous sodium sulfate and rotary-evaporated to give a yellow colored liquid. Yield, $0.23 \mathrm{~g}(80 \%):{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.00-1.43\left(\mathrm{~m}, 9 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.64(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .3 .82(\mathrm{~m}$, $2 \mathrm{H}, 5-\mathrm{H}), 4.23\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.59(\mathrm{~m}, 1 \mathrm{H}$, 3-H), 4.86 (s, 1H, 8-H); IR (neat) 2990, 1745, 1700, 1370 . $1180.1040 \mathrm{~cm}^{1}$.
8-(t-Butyl) 3-methyl 7-oxo-2-oxa-1-azabicyclo[3.3. $0]$ octane-3,8-dicarboxylate (26b). Compound 25b (0.32 g, 0.80 mmol) was reacted with lithium hexamethyldisilazide (THF, $1 \mathrm{M}, 1.6 \mathrm{~mL}, 1.6 \mathrm{mmol}$) by the same procedure as described for 26a. Yield. $0.13 \mathrm{~g}(56 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.47 (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.10-2.84(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}, 6-\mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.82(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.92$ (s. 1H, 8-H); IR (neat) $2990,1745.1700,1370,1180,1040 \mathrm{~cm}$ '.

8-(t-Butyl) 4-ethyl 3,6,6-trimethyl-7-oxo-2-oxa-1-azabicyclo[3.3.0]octane-4,8-dicarboxylate (26c).
Compound 25c ($0.26 \mathrm{~g}, 0.58 \mathrm{mmol}$) was reacted with lithium hexamethyldisilazide (THF, $1 \mathrm{M}, 1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$) by the same procedure as described for 26a. Yield, 0.13 g (69%); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.98-1.35\left(\mathrm{~m}, 9 \mathrm{H}, 2 \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.44$ (d, $\left.3 \mathrm{H}, J=6.5 \mathrm{~Hz}, 3-\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$). 3.10 (dd , $2 \mathrm{H}, J=9.8,6.9 \mathrm{~Hz}, 4-\mathrm{H}), 3.68-3.98(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.23(\mathrm{q}, 2 \mathrm{H}$, $\left.J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.68(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H})$; IR (neat) 2990, 1745, 1700, 1370, 1180, $1040 \mathrm{~cm}^{-1}$.

8-(t-Butyl) 4-ethyl 3-methyl-7-oxo-2-oxa-1-azabicy-clo[3.3.0]octane-4,8-dicarboxylate (26d). Compound $25 \mathrm{~d}(0.19 \mathrm{~g}, 0.44 \mathrm{mmol})$ was reacted with lithium hexamethyIdisilazide (THF, $1 \mathrm{M}, 0.9 \mathrm{~mL}, 0.9 \mathrm{mmol}$) by the same procedure as described for 26a. Yield, $0.10 \mathrm{~g}(74 \%)$; 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.23\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.42(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.6.5 \mathrm{~Hz}, 3-\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$), $2.04-2.83(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H})$, 3.30 (dd, $1 \mathrm{H}, J=8.9 .6 .8 \mathrm{~Hz}, 4-\mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.23$ $\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 0 \mathrm{CH} \mathrm{CH}_{3}\right), 4.54(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}$,

8 -H); IR (neat) $2990,1745,1700,1370,1180,1040 \mathrm{~cm}^{-1}$.
8-(t-Butyl) 4-ethyl 7,7-ethylenedioxy-3,6,6-trimethyl-2-oxa-1-azabicyclo[3.3.0]octane-4,8-dicarboxylate (27a). The solution of compound 26 ce ($0.68 \mathrm{~g}, 2.0 \mathrm{mmol}$), ethylene glycol (0.136 g .2 .2 mmol), and p-toluenesulfonic acid (20 mg) in toluene (50 mL) was refluxed for 12 h . After evaporaion of the solvent, the residue was dissolved in ethyl acetate (20 mL). The solution was washed with 5% sodium bicarbonate solution, dried over anhydrous magnesium sulfate, and rotary-evaporated to give a yellow colored liquid which was chromatographed over a silica gel column with hexane-ethyl acetate ($4: 1$). Yield, $0.62 \mathrm{~g}(81 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28(\mathrm{t} .3 \mathrm{H}$, $\left.J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.49(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $\left.6.5 \mathrm{~Hz}, 3-\mathrm{CH}_{3}\right), 2.80(\mathrm{dd}, 1 \mathrm{H}, J=9.0 .8 .7 \mathrm{~Hz}, 4-\mathrm{H}), 3.57$ (s, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.73 (d, $1 \mathrm{H}, J=8.7 \mathrm{~Hz} .5-\mathrm{H}$), 4.18-4.50 (m, $4 \mathrm{H} .3-\mathrm{H}, 8-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); IR (neat) $2980,1730,1100 \mathrm{~cm}^{-1}$.
8-(t-Butyl) 4-ethyl 7,7-ethylenedioxy-3-methyl-2. oxa-1-azabicycio[3.3.0]octane-4,8-dicarboxylate (27 b). Compound $26 \mathrm{~d}(0.78 \mathrm{~g}, 2.49 \mathrm{mmol})$ was reacted with ethylene glycol ($0.16 \mathrm{~g}, 2.6 \mathrm{mmol}$) by the same procedure as described for 27 a . Yield, $0.68 \mathrm{~g}(77 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.30\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.49\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, 3-\mathrm{CH}_{3}\right), 2.04(\mathrm{dd}, 1 \mathrm{H}, J=15.0,6.0 \mathrm{~Hz}$, $6-\mathrm{H}$), 2.24 (dd, $1 \mathrm{H}, J=15.0,6.4 \mathrm{~Hz}, 6-\mathrm{H}), 2.80(\mathrm{dd}, 1 \mathrm{H}, J=9.0$, $8.7 \mathrm{~Hz}, 4-\mathrm{H}), 3.55\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.70(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H})$, 3.98-4.52 (m, 4H, 3-H, 8-H, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); IR (neat) 2980,1730 . $1100 \mathrm{~cm}^{-1}$.

5-(1-Ethoxycarbonyl-2-hydroxypropyl)-4,4-dimethylproline t-butyl ester (28a). Zinc powder (85% purity, $0.28 \mathrm{~g}, 3.6 \mathrm{mgatm}$) was added slowly to the solution of compound 22e ($0.39 \mathrm{~g}, 1.2 \mathrm{mmol}$) in acetic acid (10 mL) which was maintained at $0{ }^{\circ} \mathrm{C}$. The suspension was stirred at the same temperature for 2 h and at room temperature for 1 h. The reaction mixture was filtered and the filtrate was rotary-evaporated. The residue was dissolved in ethyl acetate (20 mL) and the solution was washed with 1 M ammonia water (20 mL), dried over anhydrous magnesium sulfate, and rotrary-evaporated to give a colorless liquid. Yield, 0.34 g (86%); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}$) $\delta 1.10-1.42$ ($\mathrm{m}, 6 \mathrm{H}, 0 \mathrm{OCHCH} \mathrm{H}_{3}$. $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.18 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.47 ($\mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.04-2.58(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}, \mathrm{CHCO} 2), 3.35(\mathrm{~d}, 1 \mathrm{H}, J=7.0$ $\mathrm{Hz}, 5-\mathrm{H}), 4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{3}\right), 4.18-4.50\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}, \mathrm{OCH}_{z^{-}}\right.$ CH_{3}) : IR (neat) $3500-3100.2980,1740,1100 \mathrm{~cm}^{-1}$.

5-(1-Ethoxycarbonyl-2-hydroxypropyl)proline t-butyl ester (28b). Compound 22d ($0.508 \mathrm{~g}, 1.7 \mathrm{mmol}$) was reduced with zinc powder (85% purity, $0.39 \mathrm{~g}, 5.1 \mathrm{mgatm}$) by the same procedure as described for 28a. Yield, 0.42 g (82%): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}$) $\delta 1.10-1.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCHCH}_{3}\right.$. $0 \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.04-2.58(\mathrm{~m}, 5 \mathrm{H}, 3-\mathrm{H}$, $\left.4-\mathrm{H}, \mathrm{CHCO}_{2}\right), 3.35(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.00-4.50(\mathrm{~m}, 4 \mathrm{H}, 0 \mathrm{OCHCH}$ 2-H, $\mathrm{OC}_{2} \mathrm{H}_{2} \mathrm{CH}_{3}$); IR (neat) $3500-3100,2980,1740,1100 \mathrm{~cm}^{-1}$.

5-(1-Ethoxycarbonyl-2-hydroxypropyl)-3,3-ethylene-dioxy-4,4-dimethylproline t-butyl ester (28c). Compound 27 a (0.58 g .1 .51 mmol) was reduced with zinc powder (85% purity, $0.35 \mathrm{~g}, 4.53 \mathrm{mgatm}$) by the same procedure as described for 28a. Yield, $0.42 \mathrm{~g}(72 \%)$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}$) $\delta 1.10-1.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCHCH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.04-2.58(\mathrm{~m}, 1 \mathrm{H}$, CHCO_{2}), $3.35(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, 5-\mathrm{H}), 3.98\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{z^{-}}\right.$
O), $4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{3}\right) 4.18-4.50\left(\mathrm{~m}, 3 \mathrm{H}, 2 \cdot \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $3500-3100,2980,1740,1100 \mathrm{~cm}$ '.

5-(1-Ethoxycarbonyl-2-hydroxypropyl)-3,3-ethylenedioxyproline t-butyl ester (28d). Compound 27b (0.62 g, 1.74 mmol) was reduced with zinc powder (85% purity. $0.40 \mathrm{~g}, 5.22 \mathrm{mgatm})$ by the same procedure as described for 28a. Yield, $0.47 \mathrm{~g}(76 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) \delta 1.10-$ $1.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCHCH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.04-$ $2.58\left(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}, \mathrm{CHCO}_{2}\right), 3.35(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.88(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.00-4.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}_{3}, 2-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$); IR (neat) $3500-3100,2980,1740.1100 \mathrm{~cm}$ '.
5-[1-Ethoxycarbonyl-2-(t-butyldimethylsilyloxy)pro-pyl]-4.4-dimethylproline t-butyl ester (29a). The solution of compound 28 ($0.26 \mathrm{~g}, 0.80 \mathrm{mmol}$), imidazole (55 $\mathrm{mg}, 0.81 \mathrm{mmol}$), and t-batyldimethylsilyl chloride $(0.124 \mathrm{~g}$, 0.82 mmol) in DMF (5 mL) was stirred for 12 h . The reaction mixture was diluted with diethyl ether (20 mL) and poured into water (20 mL). The ether layer was separated, washed with water (20 mL) and saturated sodium chloride solution, dried over anhydrous magnesium sulfate, and rotary-evaporated to give a colorless liquid which was chromatographed over a silica gel column with hexane-ethyl acetate ($8: 1$) to give 29a. Yield, $0.33 \mathrm{~g}(94 \%)$; ' H NMR $\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) \delta 0.02$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.10-1.42(\mathrm{~m}, 6 \mathrm{H}$. $\mathrm{OCHCH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.18 (s. $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$). $1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.04-2.58\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}, \mathrm{CHCO}_{2}\right), 3.35$ (d, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{3}\right) 4.18-4.50(\mathrm{~m}$. $3 \mathrm{H}, 2-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); IR (neat) $3300,2980,1740,1255,1100$, $835,775 \mathrm{~cm}^{-1}$.

5-[1-Ethoxycarbonyl-2-(t-butyldimethylsilyloxy)propyl]proline t-butyl ester (29b). Compound 28b $(0.32 \mathrm{~g}$, 1.07 mmol) was reacted with t-butyldimethylsilyl chloride ($0.18 \mathrm{~g}, 1.20 \mathrm{mmol}$) in the presence of imidazole (75 mg , 1.1 mmol) in DMF (5 mL) by the same procedure as described for 29a. Yield, $0.42 \mathrm{~g}(95 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) \delta$ 0.06 ($\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2}\right)_{2}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.10-1.42$ (m, $6 \mathrm{H}, \mathrm{OCHCH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.04-2.58(\mathrm{~m}$. $\left.5 \mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}, \mathrm{CHCO}_{2}\right), 3.35(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.00-4.50(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{OCHCH}_{3}, 2-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); IR (neat) $3300,2980,1740,1255$, $1100,835,775 \mathrm{~cm}^{1}$.
5-[(1-Ethoxycarbonyl-2-(t-butyldimethylsilyloxy)-propyl]-3,3-ethylenedioxy-4,4-dimethylproline t-butyl ester (29 c). Compound $28 \mathrm{c}(0.31 \mathrm{~g}, 0.80 \mathrm{mmol}$) was reacted with i-butyldimethylsilyl chloride ($0.124 \mathrm{~g}, 0.82 \mathrm{mmol}$) in the presence of imidazole ($61 \mathrm{mg}, 0.9 \mathrm{mmol}$) in DMF $(5 \mathrm{~mL})$ by the same procedure as described for 29a. Yield, $0.38 \mathrm{~g}(95 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) \delta 0.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.10-1.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCHCH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $2.04-2.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 3.35(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, 5-\mathrm{H}), 3.98$ $\left(\mathrm{s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{3}\right) 4.18-4.50(\mathrm{~m}, 3 \mathrm{H}$, $2+\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); IR (neat) $3300,2980,1735,1255,1100,835$, 775 cm '.

5-[(1-Ethoxycarbonyl-2-(t-butyldimethylsilyloxy)-propyl]-3,3-ethylenedioxyproline t-butyl ester (29d).

Compound $28 \mathrm{~d}(0.34 \mathrm{~g}, 0.95 \mathrm{mmol})$ was reacted with t-butyldimethylsilyl chloride ($0.15 \mathrm{~g}, 1.00 \mathrm{mmol}$) in the presence of imidazole ($68 \mathrm{mg}, 1.0 \mathrm{mmol}$) in DMF (5 mL) by the same procedure as described for 29 a. Yield, $0.41 \mathrm{~g}(92 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{CDCl}_{12}-\mathrm{D}_{2} \mathrm{O}\right) \delta 0.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)\right)_{\mathrm{B}}\right)$,
1.10-1.42 (m, 6H, $\mathrm{OCHCH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.48 (s, $9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{\text {) }}$), $2.04-2.58$ ($\mathrm{m}, 3 \mathrm{H}, 4-\mathrm{H}, \mathrm{CHCO}_{2}$), $3.35(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.88$ (s , $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.00-4.50 (m, $4 \mathrm{H}, 2-\mathrm{H}, \mathrm{OCHCH}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); IR (neat) $3300,2980,1740,1255,1100,835,775 \mathrm{~cm}^{-1}$.
t-Butyl 6-[1-(t-butyldimethylsilyloxy)ethyl]-1,1-di-methylcarbapenam-3-carboxylate (30a). Methylmagnesium bromide (diethyl ether, $3.0 \mathrm{M}, 0.30 \mathrm{ml}, 0.90 \mathrm{mmol}$) was added to the solution of compound $29 \mathrm{a}(0.30 \mathrm{~g}, 0.68$ mmol) in THF (10 mL) which was maintained at $-20{ }^{\circ} \mathrm{C}$ in dry ice-carbon tetrachloride bath. The mixture was stirred at the same temperature for 2 h and at room temperature for 12 h . After saturated ammnium chloride solution (20 mL) was added, the reaction mixture was extracted with ethyl acetate ($20 \mathrm{~mL} \times 2$). The extract was washed with 10% sodium chloride solution, dried over anhydrous sodium sulfate, and rotary-evaporated to give a colorless liquid, which was chromatographed over a silica gel column with hexane-ethyl acetate ($4: 1$). Yield, $0.17 \mathrm{~g}(61 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02$ (s, $\left.6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.23\left(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.35(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, 2-\mathrm{H}), 2.80$ (dd, $1 \mathrm{H}, J=7.0$, $2.1 \mathrm{~Hz}, 6-\mathrm{H}), 3.80-3.90(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 4.31$ (t, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, 3-\mathrm{H}$); IR (neat) $2980,1770,1730,1255$, $1100,835,775 \mathrm{~cm}^{\text {? }}$.
t-Butyl 6-[1-(t-butyldimethylsilyloxy)ethyl] carbape-nam-3-carboxylate (30b). Compound 29b ($0.36 \mathrm{~g}, 0.87$ mmol) was reacted with methylmagnesium bromide (diethyl ether, $3.0 \mathrm{M}, 0.38 \mathrm{~mL}, 1.14 \mathrm{mmol}$) by the same procedure as described for 30a. Yield, $0.17 \mathrm{~g}(52 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3} \mathrm{k}_{2}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.23(\mathrm{~d}, 3 \mathrm{H}\right.$, $\left.J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), \mathbf{1 . 4 7}\left(\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.04-2.58(\mathrm{~m}, 4 \mathrm{H}, 2-$ $\mathrm{H}, 1-\mathrm{H}), 2.78(\mathrm{dd}, 1 \mathrm{H}, J=7.0,2.1 \mathrm{~Hz}, 6-\mathrm{H}), 3.84-3.91(\mathrm{~m}, 1 \mathrm{H}$, $5-\mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 4.30(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, 3-\mathrm{H})$; IR (neat) $2980,1770,1730,1255,1100,835,775 \mathrm{~cm}{ }^{1}$.
t-Butyl 6-[1-(t-butyldimethylsilyloxy)ethyl]-2,2-eth-ylenedioxy-1,1-dimethylcarbapenam-3-carboxylate ($\mathbf{3 0} \mathrm{c}$). Compound $29 \mathrm{c}(0.36 \mathrm{~g}, 0.70 \mathrm{mmol})$ was reacted with methylmagnesium bromide (diethyl ether, $3.0 \mathrm{M}, 0.30 \mathrm{~mL}$, 0.90 mmol) by the same procedure as described for $\mathbf{3 0 a}$. Yield, $0.154 \mathrm{~g}(48 \%)$; 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 0.87 (s. $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.23\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.18(\mathrm{dd}$, $1 \mathrm{H}, J=6.8,2.1 \mathrm{~Hz}, 6-\mathrm{H}), 3.77-3.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.88$ (d, $1 \mathrm{H}, J=2.1 \mathrm{~Hz}, 5-\mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}, 3-$ H); IR (neat) 2980, 1760, 1740, 1255, 1100, 835, 775 cm '.
t-Butyl 6-[1-(t-butyldimethylsilyloxy)ethyl]-3,3-eth-ylenedioxycarbapenam-3-carboxylate (30 d). Compound $29 \mathrm{~d}(0.38 \mathrm{~g}, 0.80 \mathrm{mmol})$ was reacted with methylmagnesium bromide (diethyl ether, $3.0 \mathrm{M}, 0.35 \mathrm{~mL}, 1.05 \mathrm{mmol}$) by the same procedure as described for $\mathbf{3 0 a}$. Yield, 0.15 g (42\%); 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.47(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.04$ (dd, $\left.1 \mathrm{H}, J=14.5,10.0 \mathrm{~Hz}, 1-\mathrm{H}\right), 2.38$ (dd, 1 H , $J=14.5,2.5 \mathrm{~Hz}, 1-\mathrm{H}), 3.18(\mathrm{dd}, 1 \mathrm{H}, J=6.8,2.1 \mathrm{~Hz}, 6-\mathrm{H}), 3.78$ $3.91(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.98\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.15(\mathrm{~m}, 1 \mathrm{H}$, 8-H), 4.30 (s, 1H, 3-H); IR (neat) 2980, 1760, 1740, 1255, $1100,835,775 \mathrm{~cm}^{-1}$.
t-Butyl 6-[1-(f-butyldimethylsilyloxy)ethyl]-1,1-di-methyl-2-oxocarbapenam-3-carboxylate (31a). To the solution of compound $30 \mathrm{c} \cdot(0.10 \mathrm{~g}, 0.22 \mathrm{mmol})$ in methylene
chloride (5 mL), which was maintained at $0^{\circ} \mathrm{C}$, was added perchloric acid ($60 \%, 2$ drops) and the mixture was stirred at the same temperature for 30 min and at room temperature for 1 h . The reaction mixture was poured into 5% ammonia water and the solution was extracted with methylene chloride (10 mL). The methylene chloride solution was dried over anhydrous sodiun sulfate and evaporated under reduced pressure to give a yellow colored liquid. The product was purified by silica gel column chromatography with hexaneethyl acetate ($4: 1$). Yield, 77 mg (85%); ' ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.23(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.47$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.18(\mathrm{dd}, 1 \mathrm{H}, J=6.8,2.1 \mathrm{~Hz}, 6-\mathrm{H}), 3.88(\mathrm{~d}$, $1 \mathrm{H}, J=2.1 \mathrm{~Hz}, 5-\mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ;$ IR (neat) $2980,1760,1740,1255,1100,835,775 \mathrm{~cm}{ }^{\prime}$.
t-Butyl 6-[1-(t-butyldimethylsilyloxy)ethyl]-2-oxoca-rbapenam-3-carboxylate (31b). Compound 30d $(0.11 \mathrm{~g}$. 0.25 mmol) was reacted with perchloric acid ($60 \%, 2$ drops) by the same procedure as described for 31a. Yield, 84 mg (88%); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right.$) $), 0.87$ (s , $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.35\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.47(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.42(\mathrm{dd}, 1 \mathrm{H}, J=19.0,8.0 \mathrm{~Hz}, 1-\mathrm{H}), 2.93(\mathrm{dd}, 1 \mathrm{H}$, $J=19.0,6.4 \mathrm{~Hz}, 1-\mathrm{H}), 3.18(\mathrm{dd}, 1 \mathrm{H}, J=6.8,2.1 \mathrm{~Hz}, 6 \cdot \mathrm{H}), 3.84-$ $3,91(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \mathrm{IR}$ (neat) $2980,1760,1740,1255,1100,835,775 \mathrm{~cm}^{1}$.

Acknowledgment. The present studies were partly supported by the Basic Sciene Research Institute program, Ministry of Education (BSRI-96-3417), and partly by New Drug Development Engineering Research Center.

References

1. (a) Kahan, J. S.; Kahan, F. M.; Goegelman, R.; Currie. S. A.; Jackson, M.; Stapley, E. O.; Miller, T. W.; Miller, A. K.; Hendlin, D.; Mochales, S.; Hernandez. S.; Woodruff, H. B.; Birnbaum, J. J. Antibiotics 1979, 32, 1. (b) AlbersSchonberg, G.; Arison, B. H.; Hensens, O. D.; Hirshfield, J.; Hoogsteen, K.; Kaczka, E. A.; Rhones, R. E.; Kahan, J. S.; Kahan, F. M.; Ratcliffe, R. W.; Walton, E.: Ruswinkle. L. J.: Morin, R. B.; Christensen, B. G. J. Am. Chem. Soc. 1978. 100, 6491.
2. Ratcliffe, R. W.; Albers-Schonberg, G. In The Chemistry of Thienamycin and Other Carbapenem Antibiotics, Chemistry and Biology of β-Lactam Antibiotics; Morin, R. B.; Gorman, M. Ed.; Academic Press; New York, 1982, Vol. 2, p 277.
3. Tufariello, J. J.; Lee, G. E.; Senaratine, P. A.; Al-Nuri. M. Tetrahedron Lett. 1979, 20, 4359.
4. Kametani, T.; Huang, S.-P.; Nakayama, A.; Honda, T. J. Org. Chem. 1982, 47, 2328.
5. Botteghi, C.: Soccolini, F. Synthesis 1985, 592.
6. Mancuso, A. J.: Huang, S. L.: Swern, D. J. Org. Chem. 1978, 43, 2480.
7. Stiller, E. T.; Harris, S. A.; Finkelstein, J.; Keresztesy, J. C.; Foikers, K. J. Am. Chem. Soc. 1940, 62, 1785.
8. (a) Seo, M. H.; Wang, H. C.; Lee, Y. Y.; Goo, Y. M. J. Korean Chem. Soc. 1993, 37, 837. (b) Seo, M. H.: Wang. H. C.; Lee. Y. Y.; Goo, Y. M.; Kim, K. Bull. Korean Chem. Soc. 1993, 14, 539 and references therein.
