Synthesis and Crystal Structure of CpWOs_{3} $(\mathrm{CO})_{10}(\mu-\mathrm{O})\left(\mu_{3}-\mathrm{CTol}\right)$

Jeong-Hee Chung, Joon T. Park*, Jeong-Ran Park ${ }^{\dagger}$, and II-Hwan Suh ${ }^{\dagger}$

Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
${ }^{\dagger}$ Department of Physics, Chungnam National University,
Taejon 305-764, Korea
Received October 12, 1995

In recent years organometallic oxo complexes have attracted much attention due to both models and potential catalysts for the oxygen transfer reactions. ${ }^{1}$ The oxo ligand has also been proposed to be essential to the catalyst as a spectator ligand in olefin metathesis. The cluster $\mathrm{Os}_{4}(\mathrm{CO})_{22}$ $\left(\mu_{3}-\mathrm{O}\right)_{4}{ }^{2}$ was the first oxo carbonyl cluster to be characterized, but the first monomeric oxo carbonyl complex with a terminal oxo group was $\mathrm{WCl}_{2}\left(\mathrm{PMePh}_{2}\right)_{2}(\mathrm{CO})(\mathrm{O})^{3}$. In previous work, we have reported the synthesis and solution dynamics of a tungsten-triosmium p-xylylidyne complex, $\mathrm{CpWOs}_{3}(\mathrm{CO})_{11}$ $\left(\mu_{3}-\mathrm{CTol}\right)\left(1, \mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{~T}\right.$ ol $\left.=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right),{ }^{4 a}$ and the reactivity of I toward dihydrogen leading to formation of an unexpected hydrido-oxo-alkylidene complex, $\mathrm{CpWOs}_{3}(\mathrm{CO}) 9(\mu-\mathrm{O})(\mu-$ $\mathrm{CHTol})(\mu-\mathrm{H})(2)^{4 b}$ The μ-oxo ligand of 2 may be derived from a CO ligand by $\mathrm{C}-\mathrm{O}$ bond scission or from other possible sources ($\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Me}_{3} \mathrm{NO}$ and etc.). In order to elucidate the source of the μ-oxo ligand, the reactivity of $\mathbf{1}$ toward $\mathrm{H}_{2} \mathrm{O}$ is examined. Initial decarbonylation of 1 and subsequent reaction with $\mathrm{H}_{2} \mathrm{O}$ affords a μ-oxo complex, $\mathrm{CpWO}_{3}(\mathrm{CO})_{10}(\mu$ -$O)\left(\mu_{3}-\mathrm{CTol}\right)$ (3), which suggests that the μ-oxo ligand of 2 is originated from water in the reaction solvent. We report herein details of the synthesis and crystal structure of compound 3.

Experiment Section

General Comments. All reactions were carried out under an atmosphere of nitrogen in oven-dried glasswares. Solvents were dried prior to use. $\mathrm{CpWOs}_{3}(\mathrm{CO})_{11}\left(\mu_{3}-\mathrm{CTol}\right)$ was prepared as described in the literature. ${ }^{43}$ The progress of reactions was monitored by analytical thin-layer chromatography (precoated TLC plates, Silica Gel 60F-254, E. Merck). Preparative TLC was carried out using glass-backed silica gel plates ($20 \times 20 \mathrm{~cm}$) prepared from silica gel (Type 60 , E. Merck). Infrared spectra were obtained on a Nicolet 5MX FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectra were recorded on a Bruker AM-300 spectrometer. Mass spectra were recorded by the staff at the Mass Spectrometry Laboratory of University of Illinois by using a Varian MAT-MAT-731 (FD) mass spectrometer. All m / z values are referenced to ${ }^{184} \mathrm{~W}$ and ${ }^{192} \mathrm{Os}$. Microanalytical data were provided by the Daeduk R \& D Center of Daelim Industrial Co., Ltd.

Reaction of 1 with $\mathrm{H}_{2} \mathrm{O}$. Red compound 1 (17.9 mg , 0.0145 mmol) was dissolved in a mixture of dichloromethane (15 mL) and acetonitrile (5 mL). An acetonitrile solution (1 $\mathrm{mL})$ of anhydrous $\mathrm{Me}_{3} \mathrm{NO}(1.6 \mathrm{mg}, 0.0218 \mathrm{mmol})$ was added

Table 1. Crystal Data for 3

formula	$\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{O}_{11} \mathrm{WO}_{3}$
fw	1218.79
cryst syst	monoclinic
space group	$\mathrm{P}_{1} / \mathrm{a}$
a, \AA	$28.263(7)$
b. \AA	$9.358(6)$
c. \AA	$9.986(1)$
β, deg	$96.75(2)$
V, \AA^{3}	$2622.86(5)$
Z	4
$\rho($ calcd $), \mathrm{gcm}^{-3}$	3.09
temp. K	297
$\lambda(\mathrm{Mo} \mathrm{Ka}), \AA$	0.71069
$\mu, \mathrm{~mm}^{-1}$	18.997
R	0.0920
GOF	16.87
$(\Delta / \rho)_{\text {max }}$	2.601
$\Delta \rho_{\max } / \Delta \rho_{\text {min }}, \mathrm{e} \AA^{-3}$	$3.734 /-6.556$

dropwise at room temperature, and the reaction mixture was stirred for 25 min . After evaporation of the solvent in vacuo, the residue was dissolved in dichloromethane (15 mL), and a small quantity (0.2 mL) of water was added. The resulting solution was stirred at room temperature for 10 h . Evaporation of the solvent in vacuo and purification by preparative TLC (hexane : dichloromethane, $3: 2$) gave $\mathrm{CpWO}_{3}(\mathrm{CO})_{10}(\mu-$ O) (μ_{3}-CTol) ($3,9.6 \mathrm{mg}, 0.0078 \mathrm{mmol}, 54 \%, R_{f}=0.28$) as a dark red crystalline solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right) ~ \delta 7.12-6.97(\mathrm{AB}$ pattern, 4 H), $5.77(\mathrm{~s}, 5 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$; IR $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) \vee(\mathrm{CO})$ 2098 (m), 2061 (vs), 2038 (vs), 2027 (s), 2014 (vs), 1998 (w), 1986 (m), 1969 (w), 1944 (w) cm^{-1}; MS (FD) m/z 1224 (M+); Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{O}_{11} \mathrm{WO}_{3}$: $\mathrm{C}, 22.67 ; \mathrm{H}, 0.97$; Found: C, $22.05 ; \mathrm{H}, 1.50$.

Crystal Structure of 3. A blue-green crystal of approximate dimensions $0.5 \times 0.24 \times 0.6 \mathrm{~mm}$ was used for all X-ray intensity measurements on an Enraf-Nonius CAD-4 diffractometer. The lattice parameters were determined by a leastsquares fit to 25 automatically centered reflections in the range $11.45^{\circ}<\theta<12.65^{\circ}$. Three standard reflections were measured every 180 minutes of X-ray exposure and showed maximum variation of 3.29%. One orientation reflection was monitored every 200 reflections. 3845 independent reflections with $0<h<30,0<k<10,-10<l<10$ were collected using gra-phite-monochromated Mo K α radiation and $\omega / 2 \theta$ scan mode, ω-scan angle $=(0.8+0.34 \tan \theta)^{\circ}, \theta_{\max }=23^{\circ}$. All data were converted to E_{0} values following correction for L-P. The absorption correction was not applied to the data. Space group $\mathrm{P}_{1} / \mathrm{c}$ was uniquely defined from the reflection conditions, $\mathrm{h} 0: l=$ $2 n, 0 k 0: k=2 n$. The structure was solved by direct methods using SHELX86, ${ }^{5}$ and SHELX76 program ${ }^{6}$ was used for fullmatrix least-squares refinement of the structure (use of F magnitude; $x, y, z, U_{i j}$ for $\mathrm{W}, \mathrm{Os}, \mathrm{O}$ and fifteen C atoms; $x, y, z, U_{i s o}$ for the rest eight C atoms) with unit weight. Final reliability factor for 2911 reflections [$F_{0}>30\left(F_{0}\right)$] was $R=0.0920$. Crystallographic data and atomic coordinates of compound 3 are given in Tables 1 and 2, respectively.

Table 2. Final Atomic Coordinates ($\AA \times 10^{4}$) and Equivalent Isotropic Thermal Parameters ($\AA \times 10^{3}$) with Esd's for 3

atom	x	y	z	$\mathrm{U}_{\text {eq }}{ }^{\text {b }}$
W	3836(1)	5125(2)	7116(2)	34(1)
$\mathrm{Os}(1)$	4423(1)	6956(2)	8695(2)	$36(1)$
Os(2)	3437(1)	7477(2)	8440 (2)	33(9)
Os(3)	2999(1)	4677(2)	8102(2)	$35(1)$
O(11)	4737(1)	10089(5)	8517(4)	73(3)
O(12)	5376(1)	6090(5)	7755(5)	87(3)
O(13)	4713(2)	7002(7)	11787(4)	149(5)
O(21)	3714(1)	10660(4)	8659(4)	62(2)
$\mathrm{O}(22)$	2428(1)	8349(4)	7383(5)	$72(3)$
O(23)	3332(2)	7076(6)	11466(4)	96(3)
O(31)	2165(1)	5593(5)	9594(4)	$75(3)$
$\mathrm{O}(32)$	2669(2)	1659(4)	7413(4)	69(3)
O(33)	3672(2)	3812(5)	10730(4)	89(3)
O(34)	2530(2)	5853(5)	5356(3)	74(3)
O(1)	4232(1)	4719(3)	8506(3)	46(2)
C(11) ${ }^{\text {c }}$	4651(2)	8982(9)	8603(7)	74(0)
$\mathrm{C}(12)^{\text {a }}$	4981(2)	6349(8)	8141(8)	$90(0)$
C(13)	4624(3)	6994(1)	10789(7)	144(7)
C(21)	3610(2)	$9438(5)$	8602(4)	$33(0)$
C(22)	2826(2)	8122(5)	7811(4)	33(0)
C(23)	3382(2)	6929(6)	10327(7)	97(4)
C(31) ${ }^{\text {a }}$	2492(2)	5234(5)	9046(4)	$35(0)$
$\mathcal{C}(32)^{\text {a }}$	2778(2)	2788(5)	7674(4)	$35(0)$
C(33)	3425(2)	4067(8)	9844(8)	95(4)
C(34)	2714(2)	5537(6)	6385(5)	53(3)
C(1)	3905(1)	7153(4)	6876(4)	27(2)
C(2)	3971(2)	8213(5)	5708(4)	33(2)
C(3)	3548(2)	$8813(5)$	5019(4)	36(2)
C(4)	3576(2)	9522(6)	3870(5)	51(3)
C(5)	4029(2)	9854(7)	$3439(5)$	60(3)
C(6)	4430(2)	9264(6)	4147(4)	44(3)
C(7)	4390(2)	8492(5)	5296(5)	40(3)
C(8)	4072(2)	10783(6)	2162(5)	68(4)
$C(41)^{\circ}$	3925(2)	2909(5)	6040 (5)	34(0)
C(42)	3536(4)	3381(7)	5311(5)	105(6)
$\mathrm{C}(43)^{\text {a }}$	3706(2)	4469(5)	4724(4)	$34(0)$
C(44)	4234(2)	4756(8)	5216(8)	88(5)
C(45)	4336(2)	3591(7)	5936(5)	80(4)

${ }^{4}$ The atomic temperature factor was fixed. ${ }^{{ }^{~} U_{2 q}=1 / 3\left[U_{22}+1 / \sin ^{2} \beta\right.}$ $\left.\left(U_{11}+U_{33}+2 U_{13} \cos \beta\right)\right]$.

Results and Discussion

Initial decarbonylation of 1 with the $\mathrm{Me}_{3} \mathrm{NO} / \mathrm{MeCN}$ reagent and subsequent reaction with $\mathrm{H}_{2} \mathrm{O}$ at room temperature provides a μ-oxo alkylidyne complex, $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{O})\left(\mu_{3}-\right.$ CTol) (3) in 54% yield. The formulation for compound 3 is established by mass spectroscopic and analytical data. ${ }^{1} \mathrm{H}$ NMR spectrum of 3 exhibits resonances for the Cp ligand ($\delta 5.77$) and the methyl group ($\delta 2.41$) of the tolyl moiety.

A single crystal X-ray diffraction study of 3 confirmed its characterization as an oxo alkylidyne cluster. The crystal contains an ordered arrangement of discrete $\mathrm{CpWO}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{O})$

Figure 1. Molecular geometry and atomic labeling scheme for 3.

Figure 2. Stereoscopic view of 3.
($\mu_{3}-\mathrm{CT}$ ol) molecules, which are mutually separated by normal van der Waals distances; there are no abnormally short intermolecular contacts. The overall molecular geometry and atomic labelling scheme and stereoview of $\mathbf{3}$ are illustrated in Figures 1 and 2, respectively. Interatomic distances and angles are listed in Tables 3 and 4.
Complex 3 adopts a "butterfly" arrangement of four metal atoms with a dihedral angle of $142.7(1)^{\circ}$ between W-Os(1)$\mathrm{Os}(2)$ and $\mathrm{W}-\mathrm{Os}(2)-\mathrm{Os}(3)$ planes. This is the usual arrangement for a species associated with 62 valence electrons. ${ }^{7}$ The osmium-osmium distances are $\operatorname{Os}(1)-\mathrm{Os}(2)=2.813(3) \AA$ and $\mathrm{Os}(2)-\mathrm{Os}(3)=2.899(3) \AA$ as compared to the average Os-Os bond distance of $2.877(3) \AA$ in the triangular cluster Os_{3} $(\mathrm{CO})_{12}{ }^{8}$ The individual osmium-tungsten distances vary over a rather larger range, $\mathrm{W}-\mathrm{Os}(3)=2.698(3), \mathrm{W}-\mathrm{Os}(1)=2.750(3)$ and $\mathrm{W}-\mathrm{Os}(2)=2.866(3) \AA$. The formal electron counts at the individual metal atoms are non-uniform, formally $17 \mathrm{e}-\mathrm{at} \mathrm{W}$, $19 \mathrm{e}-\mathrm{at} \mathrm{Os}(1)$, 18e- at $\mathrm{Os}(2)$, and 18 e - at $\mathrm{Os}(3)$. It seems probable that the differences in metal-metal distances are related, in part, to these variations.
The μ-oxo ligand, defined as $O(1)$, spans the W - $O s(1)$ edge such that $\mathrm{W}-\mathrm{O}(1)=1.72(3), \mathrm{Os}(1)-\mathrm{O}(1)=2.16(3) \AA$ and $\angle \mathrm{W}-\mathrm{O}$ (1)- $\operatorname{Os}(1)=89(1)^{\circ}$. If we define unbridged metal-metal bonds in the cluster as normal single bonds, we can calculate an

Table 3. Interatomic Distances (\AA) and Esd's for 3

(A) Metal-Metal	Distance			
W-Os(1)	2.750(3)	$\mathrm{Os}(1)-\mathrm{Os}(2)$	2.813(3)	
W-Os(2)	2.866 (3)	$\mathrm{Os}(2)-\mathrm{Os}(3)$	2.899(3)	
W-Os(3)	2.698(3)			
(B) Metal-Alkylidyne Distances				
W-C(1) 1.93 (4)	Os(1)	2.20(4)	$\mathrm{Os}(2)-\mathrm{C}(1)$	2.18 (4)
(C) Metal-Oxygen Distances				
W-O(1)	1.72(3)	$\mathrm{Os}(1)-\mathrm{O}(1)$	2.16(3)	
(D) Distances within the μ_{3}-CTol Ligand				
C(1)-C(2)	1.56(5)	C(2)-C(3)	1.42(6)	
$\mathrm{C}(2)-\mathrm{C}(7)$	1.32(6)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.34(6)	
C(4)-C(5)	1.43(7)	C(5)-C(6)	1.38 (7)	
C(5)-C(8)	1.56(6)	C(6)-C(7)	1.37(6)	
(E) Metal-Carbon (Carbonyl) Distances				
Os(1)-C(11)	2.01(8)	$\mathrm{Os}(2)-\mathrm{C}(21)$	1.90(5)	
$\mathrm{Os}(1)-\mathrm{C}(12)$	1.82(6)	$\mathrm{Os}(2)-\mathrm{C}(22)$	1.87(4)	
Os(1)-C(13)	2.11(7)	Os(2)-C(23)	1.98(6)	
Os(3)-C(31)	1.88(4)	Os(3)-C(32)	$1.91(5)$	
$\mathrm{Os}(3)-\mathrm{C}(33)$	2.08(8)	Os(3)-C(34)	1.98(5)	
(F) Carbon-Oxygen (Carbonyl) Distances				
C(11)-O(11)	1.07(8)	$\mathrm{C}(12)-\mathrm{O}(12)$	1.25(7)	
$\mathrm{C}(13)-\mathrm{O}(13)$	0.99(7)	C(21)-0(21)	1.18(5)	
$\mathrm{C}(22)-\mathrm{O}(22)$	1.18(5)	$\mathrm{C}(23)-\mathrm{O}(23)$	1.17(7)	
$\mathrm{C}(31)-\mathrm{O}(31)$	1.18(5)	$\mathrm{C}(32)-\mathrm{O}(32)$	1.12(6)	
C(33)-O(33)	1.09(7)	$\mathrm{C}(34)$-O(34)	1.14(5)	
(G) Distances involving the Cp Ligand				
W-C(41)	2.36(4)	$\mathrm{C}(41)$-C(42)	1.30(1)	
W-C(42)	2.51(6)	$\mathrm{C}(41)$-C(45)	1.34(8)	
W-C(43)	2.45(4)	$\mathrm{C}(42)-\mathrm{C}(43)$	1.30(7)	
W-C(44)	2.34(6)	$\mathrm{C}(43)$-C(44)	1.54(8)	
W-C(45)	2.42(6)	$\mathrm{C}(44)$ - $\mathrm{C}(45)$	1.32(9)	

approximate covalent radius of $\sim 1.449 \AA$ for the osmium atom from $1 / 2[\mathrm{~d}(\mathrm{Os}(2)-\mathrm{Os}(3))]$ and $\sim 1.249 \AA$ for the tungsten atom from $\mathrm{d}[\mathrm{W}-\mathrm{Os}(3)=2.698 \AA]-\mathrm{r}[\mathrm{Os}=1.449 \AA]$. The W-O(1) bond length of $1.72(3) \AA$ is slightly longer than welldefined tungsten-oxygen double bonds in such discrete mononuclear species as $W(=0)\left(=\mathrm{CHCMe}_{3}\right)\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}[\mathrm{~W}=0$, $1.661(11) \AA]^{9}$ and $\mathrm{W}(=\mathrm{O})\left(=\mathrm{CHCMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{2}[\mathrm{~W}=0,1$. $697(15) \AA] .^{10}$ It is substantially shorter than the predicted W-O single bond length of $\sim 1.91 \AA$ [from $\mathrm{r}(\mathrm{W}) 1.25 \AA$ and $\mathrm{r}(0) 0.66 \AA] .{ }^{12}$ It compares with typical W-O single bonds as found in $\mathrm{W}\left(\mathrm{C}_{3} \mathrm{Et} 3\right)\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$ [W-0, $1.932(10) \sim 1.982$ (11) $\left.\AA{ }^{1}\right]^{12} W^{12}\left(C_{3} \mathrm{Et}_{3}\right)\left[\mathrm{O}-2.6-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{i}-\mathrm{Pr})_{2}\right]_{3}[\mathrm{~W}-\mathrm{O}, 1.885(6) \sim 2.008$ (6) $\AA]_{13}^{13} \mathrm{~W}[\mathrm{C}(t-\mathrm{Bu}) \mathrm{CHC}(\mathrm{t}-\mathrm{Bu})]\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}[\mathrm{~W}-0,1.954$ (7) ~ $1.959(7) \AA]_{1}^{14}\left[\mathrm{NH}_{4}\right]_{5}\left[\mathrm{~W}_{3} \mathrm{O}_{4} \mathrm{~F}_{9}\right][\mathrm{W}-\mathrm{O}-\mathrm{W}, 1.91-1.99(2) \AA]^{15}$ and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]_{3}\left[\mathrm{~W}(\mathrm{CO})_{3}(\mathrm{OE})\right]_{3}[\mathrm{~W}-\mathrm{O}-\mathrm{W}, 2.11 \sim 2.14 \AA] .16$ All indications are that the W-O(1) linkage is a formal double bond. The Os(1)-O(1) distance of $2.16(3) \AA$ is slightly longer than expected for a single bond $[\mathrm{r}(\mathrm{Os})+\mathrm{r}(0)=2.11 \AA]$ and is regarded as a "coordinate-covalent" or donor bond, i.e., $0: \rightarrow 0 \mathrm{~s}$. The μ-oxo ligand is thus a 4 -electron donor (neutral atom counting scheme). The $W(\mu-O) O s$ system is best depicted as $\mathrm{W}=\mathrm{O}: \rightarrow \mathrm{Os}$. Other examples of the edge-bridging $\mathrm{W}=0: \rightarrow$ os system have been found previously in μ-oxo tungsten complexes $[\mathrm{W}=\mathrm{O}(\mathrm{av}), 1.79 \AA$ and $\mathrm{Os}-\mathrm{O}(\mathrm{av}), 2.16$

Table 4. Interatomic Angles (deg) and Esd's for 3

(A) Intermetallic Angles			
Os(1)-W-OS(2)	$60.1(1)$	W-Os(1)-Os(2)	62.0(1)
Os(2)-W-Os(3)	$62.7(1)$	W.Os(2)-0s(3)	55.8(1)
Os(1)-W-Os(3)	112.6(1)	$\mathrm{W}-\mathrm{Os}(3)-\mathrm{Os}(2)$	61.5(1)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	105.0(1)	W-Os(2)-Os(1)	57.9(1)
(B) M-M-CO Angles			
W-Os(1)-C(11)	138(2)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(21)$	85(1)
W-Os(1)-C(12)	97(2)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(22)$	163(1)
$\mathrm{W}-\mathrm{Os}(1)-\mathrm{C}(13)$	132(3)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(23)$	93(2)
W-Os(2)-C(21)	132(1)	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(11)$	99(2)
W-Os(2)-C(22)	119(1)	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(12)$	156(2)
W-Os(2)-C(23)	109(2)	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(13)$	105(3)
W-Os(3)-C(31)	153(1)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(21)$	170(1)
W-Os(3)-C(32)	110(1)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(22)$	84(1)
W-Os(3)-C(33)	84(2)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(23)$	78(2)
W-Os(3)-C(34)	85(1)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(31)$	92(1)
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(33)$	87(2)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(32)$	171(1)
$\mathrm{Os}(2)-\mathrm{Os}(3) \mathrm{C}(34)$	82(2)		
(C) $\mathrm{OC}-\mathrm{Os}$-CO Angles			
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(12)$	89(3)	$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)$	88(3)
$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(13)$	98(4)	$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(22)$	86(2)
$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(23)$	103(2)	$\mathrm{C}(22)-\mathrm{Os}(2) \mathrm{C}(23)$	103(2)
$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(32)$	97(2)	$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(33)$	93(2)
$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(34)$	94(2)	$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(34)$	95(2)
$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{C}(34)$	167(2)	$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(33)$	$94(2)$
(D) Os-C-O Angles			
$\mathrm{Os}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	175(5)	$\mathrm{Os}(2)-\mathrm{C}(21)-\mathrm{O}(21)$	178(4)
$\mathrm{Os}(1)-\mathrm{C}(12)-\mathrm{O}(12)$	1737)	$\mathrm{Os}(2)-\mathrm{C}(22)-\mathrm{O}(22)$	172(4)
$\mathrm{Os}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	176(0)	$\mathrm{Os}(2)-\mathrm{C}(23)-\mathrm{O}(23)$	158(6)
$\mathrm{Os}(3)-\mathrm{C}(31)-\mathrm{O}(31)$	178(4)	$\mathrm{Os}(3)-\mathrm{C}(32)-\mathrm{O}(32)$	177(5)
Os(3)-C(3)-0(33)	1756)	$\mathrm{Os}(3)-\mathrm{C}(34)-\mathrm{O}(34)$	171(5)
(E) Angles within the μ_{5} CTol Ligand			
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	117(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121(5)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	118(4)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	122(5)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	123(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	120(4)	$\mathrm{C}(5) \mathrm{C}(6)-\mathrm{C}(7)$	120(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	122(5)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	120(5)
(F) Angles involving O(1) or $\mathrm{C}(1)$			
$\mathrm{Os}(1)-\mathrm{W}-\mathrm{O}(1)$	52(1)	$\mathrm{Os}(2)$ W-O(1)	93(1)
Os(1).W-C.C 1)	53(1)	$\mathrm{Os}(2)$-W-C(1)	50(1)
0 (1)-W-C(1)	105(2)	$\mathrm{Os}(3)-\mathrm{W}-\mathrm{O}(1)$	101(1)
$\mathrm{Os}(3) \cdot \mathrm{W} \cdot \mathrm{C}(1)$	1088()	W-Os(1)-O(1)	39(8)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{O}(1)$	$86(8)$	W-Os(1)-C(1)	44(1)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(1)$	$50(1)$	$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{C}(1)$	$83(1)$
W-Os(2)-C(1)	42(1)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(1)$	50(1)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(1)$	94(1)	W-O(1)-Os(1)	89(1)
W-C(1)-Os(2)	$88(2)$	W-C(1)-Os(1)	83(1)
(G) Angles within the Cp Ligand			
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	101(8)	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	113(6)
$\mathrm{C}(41)-\mathrm{C}(45)-\mathrm{C}(44)$	108(6)	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(45)$	118(5)
$\mathrm{C}(43) \cdot \mathrm{C}(44)-\mathrm{C}(45)$	100(6)		

\AA in such as $\mathrm{CpWO}_{\mathrm{s}_{3}}\left(\mathrm{CO}_{3}(\mu-\mathrm{O})\left(\mu_{3}-\mathrm{CCH}_{2} \mathrm{Toll}_{1}{ }^{17} \mathrm{CpWOs}_{3}\left(\mathrm{CO}_{10}\right.\right.\right.$ $(\mu-\mathrm{O})\left(\mu_{3}-\mathrm{CCH}_{2} \mathrm{Tol}^{12}{ }^{18} \mathrm{Cp}^{*}{ }^{+} \mathrm{WO}_{3}\left(\mathrm{CO}_{9}{ }_{9}(\mu-\mathrm{O})\left(\mu_{3}-\mathrm{CCH}_{3}\right)\left(\mathrm{CP}^{*}=\eta^{5}-\mathrm{C}\right.\right.\right.$ ${ }_{5} \mathrm{Me}_{5},{ }^{19} \quad \mathrm{CpWOS}_{5}\left(\mathrm{CO}_{8}\right)_{8}(\mu-\mathrm{O})\left(\mu_{3}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mu-\mathrm{H}),{ }^{20} \quad$ anti $-\mathrm{CpWO}_{3}$
$(\mathrm{CO})_{9}(\mu-\mathrm{O})\left(\mu-\mathrm{CHCH}_{2} \mathrm{Tol}\right)(\mu-\mathrm{H}),{ }^{21}$ syn-CpWOs $\left(\mathrm{CO}_{9}(\mu-\mathrm{O})(\mu-\right.$ $\mathrm{CHTol})(\mu-\mathrm{H}),{ }^{4 \mathrm{~b}}$ and $\mathrm{CpWO}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{O})(\mu-\mathrm{C}=\mathrm{CHTol})(\mu-\mathrm{H}) .{ }^{22}$

The μ_{3}-alkylidyne ligand caps the outer face of the W-Os (1)-Os(2) "wing" triangle, with individual metal-carbon distances $\mathrm{W}-\mathrm{C}(1)=1.93(4), \mathrm{Os}(1)-\mathrm{C}(1)=2.20(4)$ and $\mathrm{Os}(2)-\mathrm{C}(1)=$ $2.18(4) \AA$. The pattern of W - $\left(\mu_{3}-C\right)$ bond lengths being shorter than $\mathrm{Os}-\left(\mu_{3}-\mathrm{C}\right)$ bond lengths has also been observed in Cp -$\mathrm{WO}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CTOl}\right)_{2} \mathrm{H}^{23} \quad[\mathrm{~W}-\mathrm{C}=1.98(2) \sim 2.01(2) \AA$ and $\mathrm{Os}-\mathrm{C}$ $=2.14(2) \sim 2.25(2) \AA]$ and $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}\left(\mu_{3}-\mathrm{CTOl}\right)_{2}(\mu-\mathrm{H})^{24}[\mathrm{~W}-$ $\mathrm{C}=2.01(1) \AA$ and $\mathrm{Os}-\mathrm{C}=2.19(2) \sim 2.27(2) \AA]$: this presumably occurs to compensate for the electron-poor nature of tungsten in all these species.

All other structural features of complex 3 are within the expected range. Individual Os -CO range from 1.82(6) through $2.11(7) \AA, \mathrm{C}-\mathrm{O}$ bond lengths range from $0.99(7)$ through 1.25 (7) \AA and $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ angles are in the range $158(6) \sim 178(4)^{\circ}$. Tungsten-Carbon(Cp) distances are between 2.34(6) and 2.51 (6) A. Distances within the CTol ligand are in the expected range with $\mathrm{C}(1)-\mathrm{C}(2)=1.56(5)$ and $\mathrm{C}(5)-\mathrm{C}(8)=1.56(6) \quad \AA$, $\left[\right.$ ideal $\left.\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)=1.51 \AA\right]$ and C -C(aromatic) $=1.32(6) \sim$ $1.43(7) \AA$ [ideal $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - $\mathrm{C}\left(\mathrm{sp}^{2}\right)=1.39 \AA$]. The structure of 3 is essentially identical to that of its homologue $\left(3+\mathrm{CH}_{2}\right)$, $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{O})\left(\mu_{3}-\mathrm{CCH}_{2} \mathrm{TOl}\right)(4),{ }^{18}$ which was structurally characterized. The μ-oxo ligand in 4 , however, is originated from the thermal acyl $\mathrm{C}-\mathrm{O}$ bond scission of $\mathrm{CpWOs}_{3}(\mathrm{CO})_{11}\left[\mu_{3}-\right.$ $\left.\eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Tol}\right]$.
The reaction of 1 with $\mathrm{H}_{2} \mathrm{O}$ produces an oxo alkylidyne "butterfly" complex 3 as shown in eq. 1. This reaction un-

ambiguously proves that the μ-oxo ligand of 3 comes from water in the solvent. Complex 3 can be converted to compound 2 by thermolysis and reaction with dihydrogen. ${ }^{25} \mathrm{~A}$ likely pathway for the formation of 3 may be loss of a carbonyl ligand from 1 followed by formation of "butterfly" hydrido hydroxo complex $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{OH})(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{CTOl}\right)$ by $\mathrm{O}-\mathrm{H}$ bond activation of water, further $\mathrm{O}-\mathrm{H}$ bond activation to form an oxo dihydrido species, and subsequent loss of H_{2}. A facile conversion of hydroxo complex $\operatorname{Re}(\mathrm{OH})\left(\mathrm{C}_{2} \mathrm{Et}_{2}\right)_{3}$ to oxo hydride complex $\operatorname{Re}(\mathrm{O})(\mathrm{H})\left(\mathrm{C}_{2} \mathrm{Et}_{2}\right)_{2}$ has been appeared in the literature. ${ }^{26}$ It has been reported that the μ-oxo ligands in $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{O})_{2}(\mu-\mathrm{H})$ clearly have not been originated from $\mathrm{Me}_{3} \mathrm{NO}$ used for decarbonylation and have not been formed in a carefully dried solvent. ${ }^{27}$ Similarly, the oxo complexes $\mathrm{CpWOs}_{s}(\mathrm{CO})_{8}(\mu-\mathrm{O})\left(\mu_{3}-\eta^{2}-\mathrm{C}_{2} \mathrm{R}_{2}\right)(\mu-\mathrm{H}) \quad(\mathrm{R}=\mathrm{H}, \mathrm{Ph}, \mathrm{Tol})$ were also reported to be produced by initial decarbonylation of the alkyne complexes $\mathrm{C}_{\mathrm{p}} \mathrm{WO}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{O})\left(\mu_{3}-\eta^{2}-\mathrm{C}_{2} \mathrm{R}_{2}\right)(\mu-\mathrm{H})$ with $\mathrm{Me}_{3} \mathrm{NO} / \mathrm{MeCN}$ followed by thermolysis at $110{ }^{\circ}{ }^{\circ} .^{28}$ The μ-oxo ligand in these alkyne complexes seems to be derived also from water in the reaction solvent based on our observation.

Acknowledgment. This work is supported by Korea Science and Engineering Foundation (KOSEF). Partial support by KOSEP for J. T. P. through the Center for Inorganic Materials Chemistry and I.-H. S. through the Science Resea-
rch Center (SRC) of Excellence Program is gratefully acknowledged.

Supplementary Material Available. Details of the crystallographic study of $\mathbf{3}$ are available from the authors (I.-H. S.).

References

1. Bottomley, F.; Sutin, L. Adv. Organomet. Chem. 1988, 28. 341.
2. Johnson, B. F. G.; Lewis, J.; Williams, I. G.; Wilson, J. Chem. Commun. 1966, 391.
3. $\mathrm{Su}, \mathrm{F} . \mathrm{M}$.; Cooper, C.; Geib, S. J.; Rheingold, A. L.; Mayer, J. M. J. Am. Chem. Soc. 1986, 108, 3545.
4. (a) Park, J. T.; Shapley, J. R. Bull. Korean Chem. Soc. 1990, 11, 531. (b) Park, J. T.; Chung, J.-H.; Kim, H.-J.; Yoon, K. W.; Yun, S.-S.; Suh, I.-H.; Lee, J.-H. Bull. Korean Chem. Soc. 1994, 15, 599.
5. Sheldrick, G. M. SHELX76, Program for Crystal Structure Determination, Univ. of Cambridge, England, 1976.
6. Sheldrick, G. M. SHELX86, Program for the Solution of Crystal Structure Univ. of Göttingen, Germany, 1986.
7. (a) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1.
(b) Sappa, E.; Tiripicchio, A.; Carty, A. J.; Toogood, G. E. Prog. Inorg. Chem. 1987, 35, 437.
8. Churchill, M. R.; DeBoer, B. G. Inorg. Chem. 1977, 16, 878.
9. Churchill, M. R.; Missert, J. R.; Youngs, W. J. Inorg. Chem. 1981, $20,3388$.
10. Churchill, M. R.; Rheingold, A. L. Inorg. Chem. 1982, 21, 1357.
11. Pauling, L. In The Nature of the Chemical Bond; Cornell University press, Ithaca, New York, 1960, Table 7-2, p 224.
12. Freudenberger, J. H.; Schrock, R. R.; Churchill, M. R.; Rheingold, A. L.; Ziller, J. W. Organometallics 1984, 3, - 1563.
13. Churchill, M. R.; Ziller, J. W.; Freudenberger, J. H.; Schrock, R. R. Organometallics 1984, 3, 1554.
14. Churchill, M. R.; Ziller, J. W. J. Organomet. Chem. 1985, 286, 27.
15. Mennemann, K.; Mattes. R. Angew. Chem. Int. Ed. Engl. 1976, 15, 118.
16. Ellis, J. E.; Rochfort, G. L. Organometallics 1982, 1, 682.
17. Churchill, M. R.; Ziller, J. W.; Beanan, L. R. J. Organomet. Chem. 1985, 287, 234.
18. Park, J. T.; Chi, Y.; Shapley, J. R. Organometallics 1994, $13,813$.
19. Gong, J.-H.; Chen, C.-C.; Chi, Y.; Wang, S.-L.; Liao, F.L. J. Chem. Soc., Dalton Trans. 1993, 1829.
20. Churchill, M. R.; Bueno, C.; Park, J. T.; Shapley, J. R. Inorg. Chem. 1984, 23, 1017.
21. Churchill, M. R.; Li, Y-J. J. Organomet. Chem. 1985, 271, 61.
22. Churchill, M. R.; Li, Y-J. J. Organomet. Chem. 1985, 294, 367.
23. Park, J. T.; Shapley, J. R.; Churchill, M. R.; Bueno, C. J. Am. Chem. Soc. 1983, 105, 6182.
24. Park, J. T.; Shapley, J. R.; Churchill, M. R.; Bueno, C. Inorg. Chem. 1984, 23, 4476.
25. Park, J. T. et al., submitted for publication in Organome-

tallics.

26. Tahmassebi, S. K; Conry, R. R.; Mayer, J. M. J. Am. Chem. Soc. 1993, 115, 7553.
27. Chi, Y.; Hwang, L.-S.; Lee, G. H.; Peng, S. M. J. Chem.

Soc., Chem. Commun. 1988, 1456.
28. Park, J. T.; Shapley, J. R.; Bueno, C.; Ziller, J. W.; Churchill, M. R. Organometallics 1988, 7, 2307.

