BULLETIN OF THE KOREAN CHEMICAL SOCIETY

VOLUME 17, NUMBER 2 FEBRUARY 20, 1996

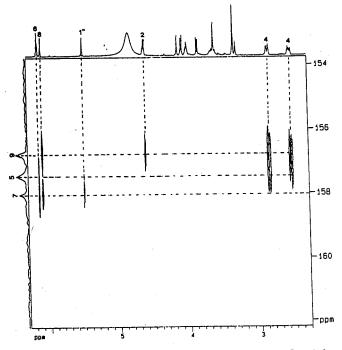
BKCS 17(2) 101-208 ISSN 0253-2964

Communications

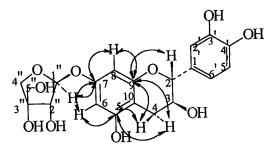
Isolation and Structure Elucidation of a Catechin Glycoside with Phospholipase A₂ Inhibiting Activity from Ulmi cortex

Sunghyouk Park, Yang Mo Goo*, and Do Sun Na[†]

College of Pharmacy, Seoul National University, Seoul 151-742, Korea [†]Department of Biochemistry, College of Medicine, University of Ulsan, Seoul 138-140, Korea


Received August 31, 1995

Extract of Ulmi cortex, dried root bark of Ulmus pumila¹ is known to possess antiinflammatory activity.² Several compounds have been isolated from Ulmi cortex,^{34,5} but the biologically active principles have not been investigated. When we examined the extract for inhibition against phospholipase A_2 (PLA₂, E.C. 3.1.14), it showed strong activity. Thus, we tried to isolate the inhibitory principle from Ulmi cortex. PLA₂ catalyzes hydrolysis of phosphatidylcholines to produce arachidonic acid and lysophosphatidylcholines which can be transformed to inflammatory mediators such as prostaglandins, leukotrienes or a platelet activating factor. So inhibitors of PLA₂ may show antiinflammatory activity. Here, we wish to report isolation of (+)-catechin-7-O- β -D-apiofuranoside (1) for the first time from a higher plant as a PLA₂ inhibitory principle.


Ulmi cortex (200 g), purchased from a folk medicine market in Seoul, was extracted with dichloromethane-methanol (1:1) and the extract was concentrated under reduced pressure to give a red oily residue (34 g). The ethyl acetate soluble components (4.8 g) of the extract was subjected to silica gel column chromatography with CHCl₃-MeOH (3:1) to give PLA₂ inhibitory fractions. The PLA₂ inhibitory component was purified by Sephadex LH-20 (methanol) column chromatography and by preparative TLC. A yellowish amorphous solid (10 mg)⁶ which showed inhibition against PLA₂ was identified to be (+)-catechin-7-O- β -D-apiofuranoside (1).

The compound showed strong absorption at 279 nm in its UV spectrum which implied the presence of phenolic aromatic rings. The doublets at 6.023 ppm (I=2.4 Hz) and 6.080 ppm (J=2.4 Hz) in its ¹H NMR spectrum were suggestive of two aromatic protons existing at the meta positions. The signals at 6.661 ppm (dd, J=2.0, 8.0 Hz), 6.781 ppm (d, J=2.0Hz), and 6.712 ppm (d, I=8.0 Hz) inferred the presence of another set of aromatic protons existing at 1, 3, 4 positions. These signals, the two double doublets at 2.485 ppm (J=16.0, J=16.0)7.6 Hz) and 2.803 ppm (J = 16.0, 5.0 Hz), and the double double doublet at 3.945 ppm (J=7.6, 7.2, 5.0 Hz) suggested that the compound should be a flavan-3-ol derivative.7 Furthermore, the ¹H NMR spectrum of the compound showed characteristic signals for (+)-trans-flavan-3-ol at 4.549 ppm (a doublet) with a coupling constant of 7.2 Hz.8 Also the fragmentation ion at m/z 290 in its mass spectrum inferred that the compound should have (+)-catechin as an aglycone. Existence of a sugar in its structure was evidenced by the anomeric proton signal which appeared as a doublet at 5.429 ppm (J=3.0 Hz). Comparison of the ¹³C NMR data of the compound with those of other flavonoid glycosides⁹ indicated that the sugar attached to (+)-catechin was D-apiofuranose. The coupling constant (J=3.0 Hz) of the anomeric proton of the sugar suggested that the phenoxy group be attached to the anomeric carbon atom by β -configuration. Thus, we concluded that the isolated compound was (+)-catechin-Oβ-D-apiofuranoside.

The sugar-attached site in the aromatic ring was figured out by HMBC technique (Figure 1 and 2). Since, among the signals of C-5, C-7, and C-9 in ring A, which were observed at higher values than 150 ppm, the signal at 158,127 ppm only showed correlations with those of H-6 and H-8 (at 6.080 ppm and at 6.023 ppm, respectively) as shown in Figure 1, we assgined it to C-7. The signals at 157.552 ppm and 156. 816 ppm showed correlations with those of H-6 and H-8. respectively, so we assigned them to C-5 and C-9, respectively. The assignments were confirmed further from the correlations of the signal of C-9 with those of H-2 at 4.549 ppm, and C-5 and C-9 with those of H-4 at 2.485 and 2.803 ppm. The carbon signal of C-7 did not show correlations with those of H-2 or H-4. The correlation of the anomeric proton signals at 5.429 ppm with that of C-7 at 158.127 ppm suggested that the sugar should be attatched at the C-7 position of the aromatic ring A. From these data we concluded

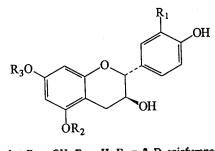


Figure 1. The HMBC spectrum of (+)-catechin-7-*O*- β -D-apiofuranoside (600 MHz, CD₃OD).

Figure 2. Correlations between carbon signals and proton signals of the A ring observed in the HMBC spectrum of (+)-cate-chin-7-O- β -D-apiofuranoside.

that the structure of the isolated flavanoid was (+)-catechin-7-O- β -D-apiofuranoside (1).

1 : $R_1 = OH$, $R_2 = H$, $R_3 = \beta$ -D-apiofuranose 2 : R_1 , $R_2 = H$, $R_3 = \beta$ -D-apiofuranose 3 : $R_1 = OH$, $R_2 = H$, $R_3 = \alpha$ -L-arabinose

4 : $R_1 = OH$, $R_2 = H$, $R_3 = \alpha - L$ -rhamnose 5 : $R_1 = OH$, $R_2 = \beta - D$ -apiofuranose, $R_3 = H$

(+)-Catechin-7-O- β -D-apiofuranoside, which was first isolated by Karl *et al.*¹⁰ from a fern *Polypodium vulgare*, is now isolated from a higher plant as a PLA₂ inhibitory principle.

Table 1. The chemical shifts assigned to the phenolic carbon atoms in A ring in (+)-catechin-7-O- β -D-apiofuranoside (1), (+)afzelechin-7-O- β -D-apiofuranoside (2), (+)-catechin-7-O- α -L-arabinoside (3), and (+)-catechin-7-O- α -L-rhamnoside (4)*

Carbon Number	1	2	3	4
5	157.552	156.08	156.07	155.20
7	158.127	156.16	155.83	156.22
9	156.817	155.15	155.11	156.17

*NMR data were obtained at 125 MHz in CD₃OD (1), at 90.8 MHz in DMSO-d₆ (2, 3), or at 125 MHz in DMSO-d₆ (4). The assignments of chemical shifts to the carbon atoms were done by NMR techniques by us in the present paper for compound 1 and by other people for compound 2^8 , 3^{13} and 4^{13} .

Table 2. Carbon atom chemical shifts of (+)-catechin-7-O- β -D-apiofuranoside (1; 125 MHz; TMS; CD₃OD) and (+)-catechin-5-O- β -D-apiofuranoside (5; 125 MHz; py-d₅; reported by Son *et al.*⁵) and their differences ($\Delta \delta$)

Carbon Number	1	5	Δδ
2	82.885	82.9	0.015
3	68.616	67.8	0.816
4	28.386	29.2	0.814
5	157.552	157.8*	0.248
6	97.404	97.1	0.304
7	158.127	157.9*	0.227
8	96.950	96.1	0.850
9	156.817	156.8*	0.017
10	103.331	103.4	0.069
1′	132.137	131.8	0.337
2'	115.240	115.7	0.460
3′	146.275	146.9	0.625
4'	146.244	146.9	0.656
5'	116.147	116.1	0.047
6′	119.961	119.4	0.561
1″	108.758	108.8	0.042
2"	78.305	77.8	0.505
3″	80.272	80.0	0.272
4″	75.449	75.4	0.049
5″	65.068	64.5	0.568

*The assignments of these aromatic signals of 5 were not done clearly in the original paper and adjusted by us to fit best to those of 1.

Karl *et al.* deduced the sugar-attached site in (+)-catechinapiofuranoside from comparison of its ¹³C NMR data with those of other 4-ketoflavonoids.¹¹ However, (+)-catechinapiofuranoside is a flavan-3-ol-glycoside, and currently, NMR data of flavan-3-ol-glycosides are limited. So, unambiguous determination of the sugar-attached phenolic carbon atom in flavan-3-ol glycosides from comparison of the NMR data with those of other flavonoids¹² was not easy and we could not see any rules in chemical shifts of C-5, C-7 and C-9

Figure 3. Inhibition of PLA₂ by (+)-catechin-7-O-β-D-apiofuranoside. PLA₂ activity was measured by the method of Tanaka *et al.*¹⁶ with a slight modification using 1-stearoyl-2- $[1-^{14}C]$ arachidonyl-L-3-phosphatidylcholine as the substrate. The standard assay mixture contained Tris-HCl buffer (100 mM, pH 7.4), CaCl₂ (3.0 mM), the substrate (20 µM) and an enzyme catalyzing hydrolysis of the substrate less than 20% in 40 min. The mixture was incubated at 37 °C for 40 min. and the reaction was terminated by addition of Dole's reagent (1.25 mL). Free fatty acid was extracted with *n*-heptane and the radioactivity of the extract was counted with a liquid scintillation counter.

of the aromatic ring A in flavan-3-ol-7-O-glycosides (1, 2, 3, 4),^{8,13} which are summarized in Table 1. HMBC technique was the most reliable method to figure out the sugar attached site in flavan-3-ol-glycosides.

Son *et al.* reported isolation of (+)-catechin-5-O- β -D-apiofuranoside (5) from *Ulmus davidiana*.⁵ But the isolated compound seems to be the same as ours. They elucidated the sugar attached site by Gibbs' test.¹⁴ However, when we compared the NMR data (Table 2), both compounds showed almost identical chemical shifts.

The methanol extract of Ulmi cortex was reported to have antiinflammtory activity by Hong *et al.*² They obtained the result from carageenin paw edema swelling and leukocyte emigration experiments. Di Rosa *et al.*¹⁵ observed the increase in prostaglandin production in the carageenin-induced paw edema inflammation site. When we examined the inhibitory activity of the isolated compound against *Crotalus adamanteus* PLA₂, it showed weak inhibition (IC₅₀, 500 μ M; Figure 3). Since it showed weak inhibition against PLA₂, we are still looking for other antiinflammatory principles in Ulmi cortex.

Acknowledgment. This research was supported by the Basic Research Institute Program, Ministry of Education, Korea, 1995 (BSRI-95-3417) and HAN project from the Ministry of Science and Technology (1993-1995).

References

- 1. Eun, J. S.; Song, W. Y. Korean J. Pharmcogn. 1994, 25, 144.
- Hong, N. D.; Rho, Y. S.; Kim, N. J.; Kim, J. S. Korean J. Pharmagogn. 1990, 21, 217.
- Chen, F. C.; Lin, Y. M.; Chen, A. H. Phytochemistry 1972, 11, 1190.
- Kim, S. H.; Hang, K. T.; Park, J. C. Korean J. Pharmagogn. 1992, 23, 229.
- 5. Son, B. W.; Park, J. H.; Zee, O. P. Arch. Pharm. Res. 1989, 12, 219.
- 6. $[\alpha]_D 36^{\circ}$ (MeOH, c 0.52); UV λ_{max} (MeOH) nm: 279; IR v_{max} (KBr) cm⁻¹: 3420, 1620, 1610, 1510, 1040; FAB-MS m/z: 423(M+H)⁺; EI-MS(70 eV) m/z(rel. int.): 290 (20), 152(53), 139(100); ¹H NMR (400 MHz, CD₃OD): δ 2.485 (1H, dd, J=16.0, 7.6 Hz, 4-H_{axial}), 2.803 (1H, dd, J=16.0, 5.0 Hz, 4-H_{equatorial}), 3.566 (2H, m, 5"-H₂), 3.795, 4.032 (2H, AB system, $J_{AB}=10$ Hz, 4"-H2), 3.945 (1H, ddd, J=7.6, 7.2, 5.0 Hz, 3-H), 4.086 (1H, d, J=3.0 Hz, 2"-H), 4.549 (1H, d, J=7.2 Hz, 2-H), 5.429 (1H, d, J=3.0 Hz, 1"-H), 6.023 (1H, d, J=2.4 Hz, 8-H), 6.080 (1H, d, J=2.4Hz, 6-H), 6.661 (1H, dd, J=8.0, 2.0 Hz, 6'-H), 6.712 (1H, d, J=8.0 Hz, 5'-H), 6.781 (1H, d, J=2.0 Hz, 2'-H); ¹³C NMR (125 MHz, CD₃OD): See Table 2.
- Murakami, T.; Wada, H.; Tanaka, N.; Kuraishi, T.; Saiki, Y.; Chen, C. M. Yakugaku Zasshi 1985, 105, 649.
- Kim, J. W.; Kinghorn, A. D. Tetrahedron Lett. 1987, 28, 3655.
- Markham, K. R. Techniques of Flavonoid Identification 1982, Academic Press, New York, pp 79-85.
- Karl, C.; Muller, G.; Pederson, P. A. Z. Naturforsch. 1982, 37c. 148.
- Markham, K. R.; Ternai, B.; Stanley, R.; Geiger, H.; Marby, T. J. *Tetrahedron* 1978, 34, 1389.
- Agrawal, P. K. Carbon-13 NMR of Flavonoids, 1989, Elsevier, Amsterdam, pp 471-480.
- 13. Moon, Y. H.; Rim, G. R. Korean J. Pharmacogn. 1995, 26, 1.
- 14. King, F. E.; King, T. J.; Manning, C. J. Chem. Soc. 1957, 563.
- 15. Di Rosa, M.; Giroud, J. P.; Willoughby, D. A. J. Path. 1971, 104, 15.
- Tanaka, K.; Matsunami, S.; Matsumoto, K.; Yoshida, T. J. Antibiotics 1992, 45, 1071.