
188 Bull. Korean Chem. Soc. 1996, Vol. 17, No. 2 Chang Jae Lee

Eur. Pept. Symp., 14th 1976, 339.

8. Decoen, J. L.; Ralston, E. Biopolymers 1977, 16, 1929.

9. Premilat, S.; Maigret, B. Biochem. Biophys. Res. Comm. 

1979, 91, 534.

10. Glickson, J. D.; Cunningham, W. D.; Marshall, G. R. Bio

chemistry 1973, 12, 3684.

11. Lenkinsky, R. E.; Stephens, R. L.; Krishna, N. R. Bioche

mistry 1981, 20, 3122.

12. Lenkinsky, R. E.; Stephens, R. L.; Krishna, N. R. Biochim. 

Biophys. Acta 1981, 667, 157.

13. Reid, J. L.; Rubin, P. C. Physiol. Rev. 1987, 67, 725.

14 Surewicz, W. K.; Mantsch, H. H. J. Am. Chem. Soc, 1988, 

110, 4412.

15. Shin, J. M.; Shin, H. C. '92 Summer symposium, for 

Korean Sci. 1992, 103.

16. Carini, D. J.; Duncia, J. J. Eur. Pat. Appl. 253310, 1988.

17. Plucinska, K.; Kataoka, T.; Yodo, M.; Cody, W. L.; He, 

J. X.; Humblet, C.; Lu, G. H.; Lunney, E.; Major, T. C.; 

Panek, R. L.; Schelkun, P.; Skeean, R.; Marshall, G. R. 

J. Med. Chem. 1993, 36, 1902.

18. Carini, D. J.; Duncia, J. V.; Aldrich, P. E.; Chiu, A. T.; 

Johnson, A. L.; Poerce, M. E.; Proce, W. A.; Santella, 

J. B.; Wells, G. J.; Wexler, R. R.; Wong, P. C.; Yoo, S. 

E. J. Med. Chem, 1991, 34, 2525.

19. Thomas, A. P.; Allott, C. P.; Gibson, K. H.; Major, J.

S.; Masek, B. B.; Oldham, A. A.; Ratcliffe, A. H.; Roberts, 

D. A.; Russel, S. T.; Thomason, D. A. / Med. Chem. 1992,

35, 877.

20. A아item, W. T.; Cantone, C. L.; Chang, L. L.; Hutchins, 

S. M.; Strelitz, R. A.; MacCoss, M.; R. S. L.; Lotti, V. 

J.; Faust, K. A.; Chen, T. B.; Bunting, P.; Schorn, T. 

W.; Kivlighn, S. D.; Siegl, P. K. S. / Med. Chem. 1993,

36, 591.

21. Bovy, P. R.; Reitz, D. B.; Collins, J. T.; Chamberlain, 

T. S.; Olins, G. M.; Corpus, V. M.; McMaho, E. G.; Pa

lomo, M. A.; Koepke, J. P.; Smits, G. J.; McGraw, D. 

E.; Gaw, J. F. J. Med. Chem. 1993, 36, 101.

22. Bradbury, R. H.; Allott, C. P.; Dennis, M.;' Fisher, E.; 

Major, J. S.; Masek, B. B.; Oldham, A. A.; Pearce, R. 

J.; Rankine, N.; Revill, J. M.; Roberts, D. A.; Russell, 

S. T. J. Med. Chem. 1992, 35, 4027.

23. Bradbury, R. H.; Allott, C. P.; Dennis, M.; Girdwood, 

J. A.; Kenny, P. W.; Major, J. S.; Oldham, A. A.; Ratcliffe, 

A. H.; Rivett, J. E.; Roberts, D. A.; Robins, P. J. J. Med. 

Chem. 1993, 36, 1245.

24. Keenan, R. M.; Weinstock, J.; Finkelstein, J. A.; Franz, 

R. G.; Gaitanopoulos, D. E.; Girard, G. R.; Hill, D. T.; 

Morgan, T. M.; Samanen, J. M.; Hempel, J.; Eggleston, 

D. S.; Aiyar, N.; Gri伍n, E.; Ohlstein, E. H.; Stack, E. 

J.； Weidley, E. F.; Edwards, R. J. Med. Chem. 1992, 35, 

3858.

25. Brooks, B. R.; Bruccoleri, R. E.; Olason, B. D.; States, 

D. J.; Swaminathan, S.; Karplus, M.J. Comp. Chem. 19상3, 

4, 187.

26. Quanta/CHARMm, Biosym/MSI, 16 New England Exe

cutive Park, Burlington, MA 10803-5297, USA.

27. Matsoukas, J. M.; Agelis, G.; Hondrelis, J.; Yamdagni, 

R.； Wu, Q.; Ganter, R.; Smith, J. R.; Moore, D.; Moore, 

G. J. J. Med. Chem. 1993, 36t 904.

28. Ryckaert, J. P.; Ciccotti, G.; Berenson, H. J. C. J. Comp. 

Phys. 1977, 23, 327.

29. Craig, L. C.; Harfenist, E. J.; Paladini, A. C. Biochemistry 

1964, 3, 764.

30. Garcia, K. C.; Ronco, P. M.; Verroust, P. J.; Brunger, 

A. T.; Amzel, L. M. Science 1992, 257, 502.

n/2 Pulse Shaping via Inverse Scattering of Central Potentials

Chang Jae Lee

Department of Chemistry, Sunmoon University, Asan 336-840, Korea

Received October 24, 1995

It is shown that the inversion of the undamped Bloch equation for an amplitude-modulated broadband n/2 pulse 

can be precisely treated as an inverse scattering problem for a Schrodinger equation on the positive semiaxis. The 

pulse envelope is closely related to the central potential and asymptotically the wave function takes the form of 

a regular solution of the radial Schrodinger equation for 5-wave scattering. An integral equation, which allows the 

calculation of the pulse amplitude (the potential) from the phase shift of the asymptotic solution, is derived. An 

exact analytical inversion of the integral equation shows that the detuning-independent n/2 pulse amplitude is given 

by a delta function. The equation also provides a means to calculate numerically approximate n/2 pulses for broadband 

excitation.

Introduction

The transient response @f a system of atoms or spins to 

a coherent pulsed excitation may be predicted by the solu

tion of a Maxwell-Bloch equation. When the sample of such 

a system is "thin”，the reaction of the induced field back 

upon the exciting field may be ignored, and then it suffices 

to solve the Bloch equation alone. The equation has been 
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solved for various amplitude and/or phase modulated pulses 

by direct numerical integration and for certain pulse profiles 

analytically.1 In many instances, however, what one is ultima- 

t이y interested in is not how the system will respond to 

an excitation fi이d but how to drive the system to respond 

as one would like with a minimum expenditure of pulse 

power. The problem posed here is then quite analogous to 

inverse scattering (IS), a method for determining the shape 

of the scattering potential (the pulsed field) from 사le obser

ved scattering data (the excitation profile). A major break 

나irough in IS is the discovery of IS transform2,3 (1ST) and 

a very broad class of evolution equations has been solved 

analytically by this method.4 It finds applications in diverse 

areas of physics,5 and of particular interest here are 나le app

lications to processes during interaction between ultrashort 

pulses and resonant media in magnetic resonance imaging6,7 

and coherent optics8,9. Lamb transformed the Bloch equation 

into a form resembling a time-independent Schrodinger 

equation,8 enabling one to apply the whole arsenal of IS 

theories to deduce the shape of the exciting field. A family 

of amplitude modulated 2Nn (7V=1,2,…)soliton pulses for 

a two・lev이 system has been found by the 1ST.67

On the other hand, there is another important class of 

IS problems that has been extensively studied—scattering 

by central potentials. It actually predates 1ST, yet it appears 

that little applications of the radial problem have been made 

to similar problems in field-matter interaction processes. I 

report in this paper the discovery that n/2 rotation of a Bloch 

vector can precisely be treated as a quantum scattering by 

a central potential. Then from the analogy between a pulse 

and a central potential scatterer, the shape of the pulse can 

be determined from the standard IS procedure of construc

ting potentials from phase shifts of radial functions due to 

the potentials. Inparticular, the procedure will be applied to 

obtaining broadband10 n/2 pulses, which play an important 

role incoherent optics and spectroscopy.

In the next section a brief review is given on the previous 

works of inversion of the Bloch equation by 1ST. Then in 

section III a new me난lod for inverting the equation by apply

ing IS for central potentials is developed. The validity of 

the formulation is demonstrated by 아lowing analytically that 

it yields a d이ta-function pulse envelope for 나此 n/2 pulse, 

which is identical to the result obtained by applying 1ST. 

Section IV concludes with a summary of the main results 

of this paper along with a discussion on some further points 

of the results.

Inverse Scattering on the Entire Axis and the 
Inversion of the Bloch Equation

The interaction of a pulsed electromagnetic field with a 

two-level system is described by the Bloch equation, which 

in a rotating frame and without r시axation, is given by

M=-DXM, (1)

where M=(M*, My> with the components satisfying 

+几妒+】"?=1 is a Bloch vector and 0, A(o) with

Aco and g)i(0 being, respectively, the detuning and the amp

litude of the driving field. As usual, the overdot denotes 

differentiation with respect to time.

The Bloch equation can be transformed into a linear dif

ferential equation8

9+—(Aw2+u)i2+2zZ)i)q)=0 (2)

by introducing a non-zero differentiable function(p(Z) defined 

by

쁭 =却
A co Aco(p

where

n三 Mx-1
(4)

Equation (2) is in a Sturm-Liouville form and with the cha

nge of variables may be recognized immediately as 

a one-dimensional Schrodinger equation with the potential 

V and energy E given by

1 .
卩=—3(co「+2&), (5)

£=§■△*. (6)

The goal of IS is to construct V from the scattering data 

(the asymptotic behavior of cp as Woo). Assume that initially 

(£t — oo) the Bloch vector has the equilibrium value, M=(0, 

0, ~1). Suppose further that one wishes to bring it back 

to the equilibrium position after applying the pulse regard

less of the magnitude of the detuning, so that Mz— —1, or 

equivalently, t^ = 1 as —b. This corresponds to seeking an 

ideal broadband 2Nn pulse. In the quantum scattering la

nguage the restoration to the initial equilibrium value of the 

Bloch vector after the passage of a 2Mr pulse corresponds 

to the transmission of an incident wave without reflection. 

And the potentials responsible for this phenomena are well- 

known reflectionless potentials.11 As detailed in Refs. 6 and, 

7 for amplitude modulation one may consider only the real 

part of V and make the ansatz

coi(£) = 2\/— V(t). (7)

With V reflectionless potentials one gets the amplitude mo

dulated broadband 27Vn pulses given in Refs. 6 and 7 The 

purely amplitude modulated hyperbolic secant 2n pulse that 

exhibits self-induced transparency12 (SIT) is but one of the 

pulses that may be derived from such a family of reflection

less potentials. Anapplication of 1ST to SIT is discussed in 

a paper by Haus.13

To apply the method reviewed above to pulse areas other 

than 2Mt recall that since m (and hence V) vanishes as 

£tgo, t|(Z) must be such that the asymptotic solution <p(t) 

is a linear combination of exp (± zA(o//2). Difficulties arise, 

however, for these other pulse areas, since t](/) no longer 

is a constant but in general is a function of Aco and t. It 

turns out that for n/2 pulses the asymptotic s이utions do 

hav은 the right form, and it can be shown by an exact analytic 

solution of a pertinent GeFfand-Levitan-Marchenko (GLM) 

equation that initially the pulse has a 8-function profile.14 

When evolution of the scattering data is considered, one can 

obtain in principle an infinite number of pulse shapes. A 

numerical study on this initial value problem is being carried 

out by the author.
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Inverse Scattering Theory for Central Potentials 
and n/2 Pulse Shaping

Tranformation of the Bloch equation into a radial 

problem. Now I attempt a new approach to obtain the 

shape of the pulses by applying the inverse theories develo

ped for scattering by central potentials. To this end note 

that it is not illegitimate to set the initial time at Z=0. Then 

with the obvious change of variables T 스느 y nothing prevents 

one from regarding Eq. (2) as a radial equation for the three- 

dimensional scattering by a central field:

[兼+K" 쓰町=0. ⑻

The regular solution satisfies the boundary condition ^(0)=0, 

and the asymptotic form it takes is given by

yi〜 血何_-壹加+&), (9)

where & is a phase shift.

The relation between <p and r\ may be inverted to give

(p(/) = exp{ —[Ato7](f)+(Oi(f (10)

However, it is not an acceptable solution to Eq. (2), now 

interpreted as a radial equation, because it is not regular 

at the origin. This problem can be circumvented: since the 

detuning can be either positive or negative, the wave func

tion may be decomposed as

(p±(/)=exp{-yjo [+ |2\a)|ii±e)+a)i(t')]d£'}, (11) 

where 门±。)=门(± I△에;t). Both wave functions satisfy Eq. 

(2) with the same energy. Then the most general formal 

solution to Eq. (2) that vanishes at the origin is

(p(0 =N{expf kx\+(Cd?] — exp[ — 寸()kx\ 一

exp[ - (12) 

where N is a normalization constant and k— IA(d|/2.

Suppose now we seek a pulse that takes the Bloch vector 

from M=(0, 0, -1) to M=(l, 0, 0) at the end of the pulse 

t=tp regardless of A(o, namely a detuning-independent n/2 

pulse. (If the tail of the pulse is not rigorously zero but 

is negligible at t>tp, the subsequent results hold essentially 

true.) At a later time t>tp the magnetization vector will have- 

precessed due to the detuning to give Mx=cosAco(^—tp) and 

My=sinA(i)(t—tp)f and hence

m i sinAa血一切
门 cosAco^—^)—1 (13)

With this asymptotic form of t)(0» both exponential func

tions in 사le braces of Eq. (12) give rise to a factor sin k(t—tp). 

The pulse area

f coi(f)rff = t>tp (14)

J o Z

is just the total flip angle, so the last exponential function 

may be absorbed in the normalization constant. Consequen

tly, one has asymptotically

cp(£)~sin (15)

which indeed is the asymptotic form of the regular solution 

of the radial Schrodinger equation, Eq. (9), and the phase 

shift is given by

& = -냐血 十능 (16)

Another way to get the phas shift is, since Eq. (2) and 

Eq. (8) are identified, to u응e the continuity condition of(p(f) 

and the asymptotic solution sin(^—l/2/n + 8z) and their first 

derivatives at t=tp. Thus, equating the logarithmic derivati

ves at t=tg one has

expU： 初+" 씨+exp[—加l-Q씨

9 L翰讷凯]+(t')%'] —exp[—zj：凯1一。')勿'] 

k

tan(^? —~/n+8/) 

(17)

and consequently

&= — ktp++tan- (18)

where

_■ expFJ：刎1- exp[一寸：加]

旭)expp"+ 加i—(f)써

(19)

In the last equality T](^)=co is used. The inverse tangent 

term contributes wn to the phase shift, n being the number 

of bound states. However, there are no poles in the S-matrix 

element S侬)=exp(2/&)) on the positive imaginary axis of 

the complex-^ plane. It follows therefore that there are no 

bound states and the phase shift a융ain reduces to Eq. (16).

Analytical n/2 pulse shape by exact inversion. Gi

ven the scattering data as a phase shift, the potential may 

be extracted from various inverse methods such as the Gel' 

fand-Levitan theory and the Born and the semiclassical app

roximations. Many of the practical inversion methods have 

been reviewed by Buck.15 The approach taken here is to 

use the well-known formula16

sin&= ji(kr)V(r)yi,k(r)r dr, (20)

where ji(kr) is a spherical Bessel function. Inverse solution 

to the equation by an analytical method is difficult and the 

straightforward numerical approach, parametrizing the pote

ntial and varying the parameters until a satisfactory fit to 

the phase shift is obtained, may be adopted. Fortunately, 

however, the problem can be simplified substantially on the 

following physical grounds: If in Eq. (2) the potential is zero 

for all r>0, the wave function is given by(p(#)~sin kr. On 

the other hand, in the absence of the scattering potential 

the phase shift must be zero, so the asymptotic form of the 

regular solution of Eq. (8) becomes yisin(^r — 1/2/n). To 

identify Eq. (2) with Eq. (8) it is thus required that 2 = 0 
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(the s-wave scattering). Consequently, for n/2 pulse shaping 

the only relevant scattering data is the phase shift 8o= —ktp, 

and the determination of the potential reduces to solving

sin ktp=J： sin kr'Vir'y^dr'. (21)

Now the inverse problem is amenable to an exact analysis. 

One can recognize Eq. (21) as a Fourier sine transform and 

the inverse transform is given by

7(r)(p(r)=으J sin kr sin ktp dk

= —— f dj비铲 + 厂对-铲 — °沧 + 伊 一 °-昭+%)勺

2n Jo

= 8+(访一尸)+ 8+(尸一切一8+(—场一俨)一 &卜(乌广成)

=日 |f『一차一F—卩——
2nz L tp~r r~tp ~tp—r tp-rr j

+ -r) + 8(r -用 一8(、一切—t) — 8(以+r)l (22)
厶

In the above, the definition

8+(co) = -^ lim "赤一如=洁？丄+ §8((d) (23)

2tT J 0 zjJTZ (D Z

is used. P(l/x) is the principal part of 1/x. Eq. (22) is further 

reduced to

7(r)(p(r)=6(r - tp) (24)

by using the property 8(—光)=照)and from the fact that 

r, tp>Q. Or, one could get Eq. (24) intuitively from the struc

ture of Eq. (21).

Since a physically acceptable wave function is finite every

where, it is V(r) that has the 8-function characteristic. So 

we may put the potential in the form

卩(尸)드尸 TQ (25)

and the wave function within the range of the potential in 

the form

戒沪号备 (26)

subject to the conditions(p(0)=0 and g(tp)— 1. Furthermore, 

because of the 8-function character of the potential the inci

dent wave virtually cannot penetrate the potential well, a 

situation of potential scattering.16 It in turn means that f(t^) 

too. In principle, there can be an infinite number of poten

tial-wave function pairs that satisfy these conditions. But, 

from the relation17

[8(r)]2= lim [ eikxdx\ = lim K8(r) (27)

k* L 2n J-K/2 」 Kf

it is reasonable to put

V(r)=A^r~-tp)^ (28)

The constant A can be determined from Eq. (14) to give 

A=— (n/4)2. Therefore, the desired potential is

阳)=-件祐—时， (29) 

and consequently the pulse amplitude is

®i(£) = ^8(£f), (30)

in agreement with the earlier result.14 Note that in arriving 

at these conclusions it was not required to know the explicit 

form of the wave function.

The consistency of the results can also be checked by 

solving the direct scattering problem. Let us consider, as 

a representation of the 8-function potential given by Eq. (29), 

an infinitely deep spherical square well potential. For a sphe

rical square well potential of any depth, the Schrodinger 

equation can be solved exactly and the s-wave phase shift 

is given by &)= —j初o+tan", (k/K tanKr0)> where r0 is the 

width of the potential well and k= [2/w(E + Vo)M2]1/2» K 

being the depth of the w이!.比 In the usual notation of this 

paper r0=tp and k=(F+o)i2/4)1/2. Note that in the limit of 

a n/2 udelta" pulse, (DiT。。, but 叫=히2. The phase shift 

then becomes 80= —ktp, which is identical to the one obtai

ned above.

Summary and Discussions

Previous works on inverting the Bloch equations wer은 ba

sed on the methods of one-dimensional IS on the entire 

real axis. It is equally legitimate to regard the problem as 

one on the positive real axis (i.e. a radial problem). This 

paper demonstrates that indeed n/2 pulse shaping can be 

precisely connected to the inverse scattering of central pote

ntials. It was possible, by formulating the problem in the 

latter manner, to immediately take advantage of the exten

sive information available for the radial problem, culminating 

in the derivation of Eq. (21). An exact analytical inversion 

of Eq. (21) shows that the detuning-independent n/2 pulse 

profile is given by a delta-function unlike the pulses, 

which take the form of solitons. Previously, the perfectly 

uniform excitation profile a delta pulse gives could be explai

ned only in linear response theory, where the excitation pro

file is given by a Fourier transform of the pulse shape (See 

the discussion in Ref. [1(b)], for example). However, linear 

response theory holds in the limits of weak applied fields 

or small flip angles. We have seen that IS offers a rigorous 

explanation for the nonlinear response of a system to a cohe

rent pulse. Appropriately, the related technique of 1ST has 

been termed the nonlinear Fourier transform.3

Pulses with the delta-function profile have long been exte

nsively used due to its conceptual simplicity, although tech

nical limitations force one to generate and manipulate them 

only in an approximate manner. Furthermore, although the 

analysis in this paper shows that the delta-function profile 

is the only exact detuning-independent shape for a n/2 pulse, 

it is not a broadband pulse because of its (infinitely) large 

amplitude. One hopes to get over the drawbacks of the delta 

pulse and its finite-amplitude approximation by pulse sha

ping. For most practical applications it suffices to find (most 

likely by means of numerical optimization) pulses that have 

reasonably slowly varying envelopes and perform well over 

a reasonably wide range of bandwidth. Eq. (21) can also be 

used as a definite means for such an investigation. Both 

GLM equation and Eq. (21) yield an identical 8-function so
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lution, so it seems that these approaches are complementary 

to each other at least for n/2 pulse shaping. It would be 

illuminating to compare the numerical results from these 

two approaches. Work along this line is under way.
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We present a theoretical formulation of diffusion process on solid surface based on multidimensional transition state 

theory (TST). Surface diffusion of single adatom results from hopping processes on corrugated potential surface and 

is affected by surface vibrations of surface atoms. The rate of rare events such as hopping between lattice sites 

can be calculated by transition state theory. In order to include the interactions of the adatom with surface vibrations, 

it is assumed that the coordinates of adatom are coupled to the bath of harmonic oscillators whose frequencies are 

those of surface phonon modes. When nearest neighbor surface atoms are considered, we can construct Hamiltonians 

which contain terms for interactions of adatom with surface vibrations for the well minimum and the saddle point 

configurations, respectively. The escape rate constants, thus the surface diffusion parameters, are obtained by normal 

mode analysis of the force constant matrix based on the Hamiltonian. The an진ysis is applied to the diffusion coeffici

ents of W, Ir, Pt and Ta atoms on the bcc(110) plane of W in the zero-coverage limit The results of the calculations 

are encouraging considering the limitations of the model considered in the study.

Introduction

Diffusion of atoms and molecules adsorbed on solid surfa

ces is an important and interesting phenomena both from 

a conceptual and a practical points of view.1,2 It is the primary 

mechanism of mass transport on s이id surfaces. Surface dif

fusion plays a key role in the growth of thin films, the for

mation of epitaxial layers, and the catalytic reaction occurring 

on metal surfaces.

The migration of adsorbed atoms on solid surfaces have 

been studied extensively both experimentally and theoretica

lly. In recent years, the development of the field ion micros

cope (FIM) allows one to image the metal substrate surface 

in atomic resolution.1,4'6 Several elementary atomic processes 

on surface have been studied in detail with FIM : surface 

diffusion of single adatoms and small clusters, adatom-ada-


