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lution, so it seems that these approaches are complementary 

to each other at least for n/2 pulse shaping. It would be 

illuminating to compare the numerical results from these 

two approaches. Work along this line is under way.

Acknowledgment. This work was supported by a 1994 

institutional research fund from Sunmoon University.

References

1. For recent reviews see, (a) Shore, B. W. Theory of Cohe

rent Atomic Excitation; Wiley: New York, U. S. A., 1990; 

Vol. I, Chapter 5. (b) Warren, W. S.; Silver, M. S. In 

Advan. Magn. Reson. 1988, 12, 247.

2. (a) Zakharov, V. E.; Shabat, A. B. Sov. Phys.-JETP 1972, 

34, 62. (b) Func. Anal. Appl. 1974, 8, 226.

3. (a) Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, 

H. Phys. Rev. Lett. 1973, 30, 1262. (b) ibid. 1973, 31, 125. 

(c) Stud. Appl. Math. 1974, 53, 249.

4. An extensive list of evolution equations solvable by IS 

transform can be found in Calogero, F.; Degasperis, A. 

Spectral Transform and Solitons I; North-Holland: Amste

rdam, Netherland, 1982.

5. For a general overview the reader is referred to Ghosh 

Roy, D. N. Methods of Inverse Problems in Physics; CRC 

Press: Boca Raton, U. S. A„ 1991; Chapter 1.

6. (a) Grunbaum, A.; Hasenfeld, A. Inverse Probl. 1986, 2, 

75. (b) ibid. 1988, 4, 485.

7. (a) Hasenfeld, A. J. Mag. Res. 1987, 72, 509. (b) Hasen- 

feld, A.; Hammes, S.; Warren, W. S. Phys. Rev. 1988, 

A38, 2678.

8. (a) Lamb, Jr., G. L. Rev. Mod. Phys. 1971, 43, 99. (b) 

Phys. Rev. Lett 1973, 31, 196. (c) Elements of Soliton 

Theory; Wiley: New York, U. S. A.; 1980.

9. Michalska-Trautman, R. Phys. Rev. 1981, A23, 352. ibid. 

1992, 46, 7270, and references therein.

10. The normalized bandwidth of a shaped pulse is defined 

as the ratio Aco/co, whereis the root-mean-square pu

lse amplitude. See, for example, Zax, D. B.; Vega S. Phys. 

Rev. Lett. 1989, 62t 1840.

11. (a) Bargmann, V. Rev. Mod. Phys. 1949, 21, 488. (b) Lan

dau, L. D.; Lifshitz, E. M. Quantum Mechanics; 3rd ed.; 

Pergamon: Oxford U. P., U. K.; 1977.

12. (a) McCall, S. L.; Hahn, E. L. Phys. Rev. Lett. 1967, 18, 

908. (b) Phys. Rev. 1969, 183, 459.

13. Haiis, H. Rev. Mod. Phys. 1979, 51, 331.

14 Lee, C. J. Nuovo Cimento 1993, 108B, 1299.

15. Buck, U・ Rev. Mod. Phys. 1974, 46, 369.

16. Messiah, A. Quantum Mechanics; Vol. I; North-H시land: 

Amsterdam, Netherland; 1961.

17. A well-known example, in which a square of the 8-func- 

tion appears in the intermediate step, is the calculation 

of the transition probability by time-dependent perturba

tion theory.

Theoretical Studies of Surface Diffusion : 
Multidimensional TST and Effect of Surface Vibrations

Kijeong Kwac, Seokmin Shin, Sangyoub Lee*, and Kook Joe Shin*

Department of Chemistry and Center for Molecular Catalysis, Seoul National University, Seoul 151, Korea

Received October 26, 1995

We present a theoretical formulation of diffusion process on solid surface based on multidimensional transition state 

theory (TST). Surface diffusion of single adatom results from hopping processes on corrugated potential surface and 

is affected by surface vibrations of surface atoms. The rate of rare events such as hopping between lattice sites 

can be calculated by transition state theory. In order to include the interactions of the adatom with surface vibrations, 

it is assumed that the coordinates of adatom are coupled to the bath of harmonic oscillators whose frequencies are 

those of surface phonon modes. When nearest neighbor surface atoms are considered, we can construct Hamiltonians 

which contain terms for interactions of adatom with surface vibrations for the well minimum and the saddle point 

configurations, respectively. The escape rate constants, thus the surface diffusion parameters, are obtained by normal 

mode analysis of the force constant matrix based on the Hamiltonian. The an진ysis is applied to the diffusion coeffici

ents of W, Ir, Pt and Ta atoms on the bcc(110) plane of W in the zero-coverage limit The results of the calculations 

are encouraging considering the limitations of the model considered in the study.

Introduction

Diffusion of atoms and molecules adsorbed on solid surfa

ces is an important and interesting phenomena both from 

a conceptual and a practical points of view.1,2 It is the primary 

mechanism of mass transport on s이id surfaces. Surface dif

fusion plays a key role in the growth of thin films, the for

mation of epitaxial layers, and the catalytic reaction occurring 

on metal surfaces.

The migration of adsorbed atoms on solid surfaces have 

been studied extensively both experimentally and theoretica

lly. In recent years, the development of the field ion micros

cope (FIM) allows one to image the metal substrate surface 

in atomic resolution.1,4'6 Several elementary atomic processes 

on surface have been studied in detail with FIM : surface 

diffusion of single adatoms and small clusters, adatom-ada
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tom interactions, site-specific atom-substrate interactions, and 

adatom-lattice interactions. One can directly observe random 

walks of single adatoms and measure diffusion coefficients 

quantitatively. In molecular dynamics simulations of surface 

diffusion,7'13 one can follow the motions of individual atoms 

in detail, thus providing a test for approximate dynamical 

theories. Diffusion coefficients and activation energies can 

be easily calculated in the simulations. Several versions of 

transition state theory and quantum correlation function 

theory have also been used to study the mobility of heavy 

or light atoms.14'19

Experimental results indicate that the character of surface 

diffusion, in particular the diffusion mechanism, can vary 

depending on the substrate and the orientation of the sur

face. For example, simple hopping between adjacent sites 

often gives ways to adatom-substrate exchange.12 In the case 

of diffusion on relatively smooth surfaces such as bcc(llO) 

or fcc(HO), it may be safe to assume that diffusion occurs 

via jumps from one adsorption site to another. In the present 

study, we theoretically investigate the diffusion of a single 

metal atom on the bcc(llO) surface of a tungsten(W) sub

strate. We assume that the motion of the adatom consists 

of independent, randomly oriented, hops between adjacent 

binding sites. The motion obeys the random-walk statistics 

and the diffusion constant is given by15

D=~느編 ⑴

where I is the distance between binding sites, d is the dime

nsionality of the diffusional motion and 吼 is the rate of 

independent hops. In the simple transition state theory 

(TST), khop is represented as15

khop^npkTST, (2a)

kTsT=v exp(—&/如7). (2b)

where v is the prefacter in the Arrhenius form of TST rate, 

Eb is the difference between the energies at the saddle point 

where the transition state is formed and at the well mini

mum on the potential energy surface. np is the number of 

binding sites accessible for a single hop and ksT is the Boltz

mann factor. The calculation of TST rate is based on the 

assumption that no recrossings or multiple jumps occur and 

the adatom makes randomly oriented single jumps. It is also 

assumed that the escape frequency v is independent of tem

perature. The Arrhenius parameters for the diffusion cons

tant are given by

D=D0 e冲(一EJRbT), (3a)

牛琴 (3b)

Eb=E (saddle point) —E (well minimum). (3c)

We will show that the Arrhenius parameters for surface dif

fusion coefficient can be obtained by using multidimensional 

transition state theory.

Surface diffusion of single adatom results from hopping 

processes on the corrugated potential surface and its ran

dom-walk-like motion is affected by the surface vibrations 

of lattice atoms. It is necessary to include the coupling of 

adatom motion to surface phonon modes for the evaluation 

of surface diffusion parameters. The change of surface pho

non modes by the introduction of an adsorbed atom is igno

red. The frequencies of phonon modes are calculated by 

treating the surface vibration in the limit of classical mecha

nics. The purpose of the present study is to calculate the 

diffusion parameters from the jump rate by using multidime

nsional TST20,22 based on the Hamiltonian constructed to inc

lude the terms for the interaction of adatom and surface 

vibration modes.

The remainder of the paper is organized as follows. Brief 

reviews of theoretical backgrounds for multidimensional TST 

and lattice dynamics are presented in the following section. 

In the third section, the evaluation of the escape(jump) rate 

is explained in terms of (i) method of determining well mini

mum and saddle point; (ii) Hamiltonian constructions appro

priate for two configurations; (iii) rate constant expression. 

Results of model calculations for several metal atoms on W 

surface are given in the last section with some discussions.

Theoretical Backgrounds

Multidimensional TST. We consider a metastable sys

tem consisting of a reaction coordinate coupled to vibrational 

degrees of freedom. In TST, the reactant, product and saddle 

point geometries at which the gradient of potential energy 

vanishes are first located. The TST rate is given in terms 

of the product of all stable mode frequencies at the minimum 

and the inverse product of stable mode frequencies at the 

saddle point, respectively.20,21

n為仞
加st■스승侦 ■느*----  exp(-p^) (4)

n入必 
i=0

where A's are normal modes eigenvalues {(為仞)2>0, 0,***, 

y}, { —(Ao(6))2<O,(入必)2>0, i=l,…，丫}, obtained from the force 

constant matrices, and y is the number of the coupled har

monic oscillators.

As a model case, we consider a particle of mass M, whose 

coordinates x is coupled bilinearly to the bath of harmonic 

oscillators. The total Hamiltonian H of the system and bath 

is then of the form22,23

+C/(x) + | J 씨冰+아.“+ 욦刑 (5)

Here bath is composed of harmonic oscillators with mass 

阮} and frequencies {(明} and C/s are constants for coupling.

The normal mode eigenvalues entering the transition state 

rate may be evaluated via a normal mode analysis of the 

full Hamiltonian at the saddle point and at the well mini

mum. The potential U(对 is approximated at the well mini

mum as 如)三(1/2) 沧+%o)2, 先0>O, and 간 the barrier 

by U«、)=Eb—Q/2) Ma)^x2. The total Hamiltonian may be 

written in the vicinity of the well minimum and the barrier 

in a separate form as a sum of (y+1) harmonic oscillators.

Using standard techniques, we first transform to mass- 

weighted coordinates and then diagonalize the (y+1) by (y+ 

1) force constant matrix K. If we denote the second deriva

tive matrices at the saddle point and at the well bottom 

as K® and K®, respectively, one can prove the following 

identities for the determinants of K® and K°)*2,23
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Table 1. The Morse potential paremeters25

Material Uo (eV) S (A) d (X)

W 0.9710 1.3850 3.053 (3.253*)

Pt 0.7102 1.6047 2.897

Ir 0.8435 1.6260 2.864

Ta 0.7504 1.1319 3.346

*This value is used for the calculation of the phonon frequency 

of the substrate surface.

det(X0))=—Oo0))2 n (入^)2=一助2 n (6a)

det(玲)=(入胛)2 n (為仞)2=必 n to,2 (6b)
2=1 !=1

then we can recast Eq. (4) as22,23

如L쏩 彖Xp(-8瓦) ⑺

which is just the result obtained by Grote and Hynes.24 Con

sidering the average motion of the particle in the vicinity 

of the barrier, Grote and Hynes found that on the average 

the particle is not moving on the bare barrier whose imagi

nary frequency is 场 but rather on an effective barrier whose 

imaginary frequency is 入o" Pollak22 modeled the generalized 

Langevin equation (GLE) via a harmonic bath by using the 

Hamiltonian of the form as in Eq. (5) to show that the reac

tive frequency 入o히 is exactly an imaginary frequency of a 

barrier that has been modified by the bath.

On the application of the above formalism, the motion of 

adatom on the surface can be regarded as the motion of 

a particle coupled to the bath of harmonic oscillators whose 

frequencies are those of surface phonon modes. The change 

we impose on the above formalism is that the particle coup

led to the harmonic oscillators can move in three-dimensio

nal space instead of one-dimensional coordinates. Then, what 

we are to obtain is an Hamiltonian expression which contain 

the coupling coefficient G's calculated explicitly. From that 

Hamiltonian we obtain Xo(fe) through a normal mode analysis 

and calculate the hopping rate.

Lattice Dynamics. The bcc(llO) surface of tungsten 

is chosen for the calculation. Only the first layer of surface 

is considered and the effects of second layer and below are 

ignored. The number of surface atoms included in the calcu

lation is 11X11=121.

Interaction potential between the surface atoms is assumed 

to be a pairwise additive Morse potential:

Vy = UfexpL - 2澜：-d)] - 2expE -血-d)]} (8)

where r司 is the distance between atom i and atom j and 

UOf & d are constants characteristic of the pair of atoms. 

The interaction between the adatom and the surface atom 

is also assumed to be a pairwise additive Morse potential. 

The parameters Uo, g, and d are determined based on the 

bulk lattice constant, cohesive energy, and compressibility. 

The values used in this study are shown25 in Table 1. For 

two atoms of different kinds, we use the value which is ari

thmetic mean of corresponding two parameter values.

We briefly review parts of the theory of lattice dynamics26^28

Figure 1. bcc(llO) surface considered in the present study. A 

small shaded square (■) indicates the binding site minimum and 

the area enclosed by a rectangle is viewed in Figures 2. and

3.

used in this work. In the absence of adatoms, the mean 

positions of atoms of a surface are arranged in a regular 

array. The lattice site is specified by primitive basic lattice 

translation vectors % as shown in Fig. 1. The index of 

latjtice atom is («b 径2), which we will refer to collectiv이y 

as n. We denote the equilibrium position vector of the lattice 

atom in the simple lattice by niai + zz^-

The interatomic potential is assumed to be central force 

potential, depending only on the magnitude of the separation 

between atoms. Then the total potential energy W of clean 

surface is of the form:

（9）
厶 n（尹，z）

where rnm —+ 거倾广 m耸彻+佑球 ) /, Inm and unm — un 

— um. Here ln is lattice translation vector and un is displace

ment vector from its equilibrium position. In this work the 

central force potential q仞 is the Morse potential of the form 

as in Eq. (8).

The total potential energy W of the surface is assumed 

to be some function of the instantaneous positions of all 

atoms. In the harmonic approximation with respect to the 

atomic displacements, W is expanded as follows:

卬=肌+§ 2 2可a血,质）阳血）叩（師） 

厶 n, a m, P
(10)

with 

字甲
W邱3两=初aS）珈曲）'o (11)

where a and。refer to x or y, and subscript 0 means evalua

tion at w = 0. If we recast the expansion coefficients in terms 

of pairwise potential,26

必血,彻）=-S血•做 n卢n, (12a)

I偽(明z)= 2《Da血W) (12b)
m(^n)

where

S血皿）=
r^lnm

(13a)
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(D邱 3两 = {뽕 EW) - 扌机尸아 I 与 (现

We introduce the Fourier transform of the reduced displace

ment u(n) as

wM =如枳 ^/a(i)exp(zl - /„) (14)

Then we can represent the dynamical matrix, which is real 

and symmetric, as

Z샤Q)=瑟J卩邱(。湖 exp(zl-/J

= &{ X邱(0；彻)— 2(D이3(0；彻) cos(Zc-/m)} (15) 

m'彻(必) 弑见) '

From this matrix we can calculate eigenvalues, o)i2(fc), o)22 

(k) and corresponding eigenvectors,(。决(化)，苛(&)), fe2(^), e^ 

(&)), which satisfy the orthogonality and closure conditions

2為海)話侬) = &/, Z爲淋)仰淋)=8邱 (16)
a s

From the normal coordinates, QM, defined as 

fAk)=£(k) 0@)+券Q) Q2(k) (17)

we obtain the real normal coordinates as follows:

ZAk)=% [Q@)+Q*@)]=念[Q(&)+Qs(—&)] (18a)

z：(k)=■晶[QQ) — Q*(蜀]=-涉[0(A)—Qs( - fc)] (18b)

The Hamiltonian for the clean lattice is then given by

H=* Z 旗0，淋)]2 + § Z 眼W)z術2 (19)

厶 A>0 r,s 厶 fe>0 r,s

where &>0 signifies that k is summed over the permitted 

wave numbers lying on one side of the line through the 

origin of the reciprocal lattice plane.

Any displacement of lattice atom can be represented as 

linear combinations of surface vibration modes:

就即"J르虱 丄 RaWW cos(M) -Z灿 sind)}

+舞(&)02(&) cos(k*Z„)—Z22(fc) sin(fc*Z„)} (20) 

Therefore the interaction energy expression between adatom 

and surface vibrations can be constructed from the atomic 

displacements, w(m).

Escape Rate

Well minimum and Saddle Point. We consider a sin

gle adatom adsorbed in the clean surface. For implementing 

TST, we need to define the reaction (diffusion) pathway and 

identify the transition state. Even for single atom diffusion 

we must consider the behavior of the neighboring substrate 

atoms in addition to the adatom itself. It is the configuration 

of all atomic positions which defines the well minimum and 

the saddle point positions on potential energy surface. One 

should consider the interactions between adatom and all the 

atoms on the surface in order to determine the well mini

Figure 2. The well minimum configuration of an adatom on 

the bcc(llO) surface. Four atoms indexed 1, 2, 3, 4 are permitted 

to relax.

Figure 3. The saddle point configuration of an adatom on the 

bcc(llO) surface. Four atoms indexed 1, 2, 3, 4 are permitted 

to relax.

mum and TS configurations.

As an approximation, only four nearest neighbor surface 

atoms of adatom are permitted to relax and all the other 

atoms are fixed at their lattice sites. The four atoms permit

ted to move for the determination of well minimum configu

ration are different from those for the saddle 꽈oint configu

ration. The two cases are shown in Figures 2 and 3. As 

indicated in the figures, only atoms numbered 1 to 4 can 

move. The remainder of surface atoms are numbered from 

5 to 121.

From symmetry, the adatom position corresponding to the 

w이 1 minimum is the four-fold site and the saddle point is 

halfway between two adjacent four-fold sites. So only the 

z-coordinate of the adatom is to be determined. In determi

ning the position of adatom and the displacements of four 

surface atoms in the neighborhood, we consider the following 

potential function Vp:

*= 2 W{exp[-2欤为一次)] —2exp[ — §(的—d)가 + Z 岭(21) 
；=i y=i

W= 支 0°{exp[-2g(%—d)] —2 exp[-飲一d)가 (22)

where Uo\ E d‘ are parameters for the interactions between 

the adatom and a surface atom, while UOJ & d are those 

between two surface atoms. Xi — |g—이 refers to the distance 

between the adatom and surface atoms and 乂 = I马一이 to 

that between the movable surface atom and the other surface 

atoms. Then * is a function of nine variables: z-coordinate 

of the adatom and the displacements of four neighboring 

surface atoms. One can find the values of these variables 

which minimize the Vp in the saddle point region and well 

minimum region separately. The activation .energy for escape,
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Table 2. The Arrhenius parameters

Adatom/Surface Theoretical Experimental [ref.]

W/W(110)

Do (cm2/s) 4.175 X10~4 2.1X10-3 [4]

玖(kj/mol) 51.51 83.26 [4]

Pt/W(U0)

Do (cm2/s) 3.539X10T 3X10-3 ⑹

玖(kj/mol) 50.36 65 [6]

Ir/W(U0)

Do (cm2/s) 5.543 X]0T 1X10-5 [5]

Eb (kj/mol) 54.31 67.6 [5]

Ta/W(U0)

Do (cm2/s) 4.206 X10 4 4X10-2 ⑷

Eb (kj/mol) 40.90 75 [4]

玖,is obtained as the difference of interaction potentials at 

two configurations:

Eb-Vp (at the saddle point) — * (at th은 well minimum) 

(23)

For the cases of the four adatoms, W, Pt, Ir, Ta, on the 

surface of W(110), the calculated values of Eb are given in 

Table 2.

Hamiltonian Expression. Hamiltonian expressions 

near the well minimum and the saddle point can be con

structed from the configurations determined as in the prece

ding section. We first consider the saddle point configuration. 

The coordinate of the adatom can be expressed as

@ = (응。0朝%, 응sinO+a” 穴+勿) (24) 

\厶 厶 '

where bs is the z-coordinate of adatom at the saddle point 

and q爲,qyi qz are displacements from the saddle point confi

guration.

The interaction between single adatom and lattice atoms 

of the surface is given by Eq. (21). As an approximation, 

we fix all the surface atoms at their lattice sites except four 

nearest neighbor surface atoms of 1 to 4 around the adatom. 

Then we can write the interaction potential in terms of the 

displacements of the adatom and the four surface atoms. 

The Hamiltonian which is valid near the saddle point con

sists of the following terms:

H=瓦+H&+瓦 (25)

where Hs is the Hamiltonian for the surface atoms, Ha is 

the Hamiltonian for the adsorbed atom and Hc represents 

the coupling between the adatom and the surface atoms. 

We take the Hamiltonian expression of clean two-dimensio

nal lattice, Eq. (19), for Hs. The expressions of Ha and Hc 

can be written by using the potential energy expression for 

the interaction between adatom and surface atoms obtained 

as above.

We use M to denote the mass of adatom and m the mass 

of surface atom respectively and introduce the mass-weigh

ted coordinates of adatom, g-\/Mq. We also substitute the 

linear combinations of surface phonon modes, Z「(k), 2我&), 

Zf(k), Z^(k) for the surface atom displacements as in Eq. 

(20). Then, the total Hamiltonian can be recast as follows:

2 2 [软切+§ 2眼繼)[跤⑹2+*澎+妒+妒) 

厶 k〉G r.s 厶 fe>0 r,s 乙

+ W) 
1 1 1 1

心2+囱了顷切顿0

+的A展&+击Lggx

+纭葢 2；伽。* G” cos(fc ■ “

+。挤(&) E Gw cos僕• 4)}zf(£疚 

i=l

—v £ 血 sin(A*4)
mMN s红2氣1 台

+苏伉)Z Cxiy 务
i=l

+v羔蓋志{心)*領cos(m

+ 勺淋)»膈 C0Sd)}Zl淋)gy 

f=l
-V僞蓋爲sin(S)

+e/(fc) Cyiy sind)}z2Wgy 

1 = 1

W羔葢畠cos(")

+ 4海)2"初 cos(k・4)}zf(k)gz

-V爲渣爲{心)*G* sin(k，Zi)

+句淋)2 G吋 sin(k • A)]%淋)条 (26)

/=i

where

u晋"』『•, 物

「、 _ 827 I r _ 8V I
Cxix — ~~p , Cxiy— (• q '…， (27b)

邕 知 ％)

with the subscript 0 meaning the evaluation at the saddle 

point configuration.

From this Hamiltonian expression at the saddle point, we 

can make the E3+2(N — 1)] X [3+2(N -1)] force constant 

matrix, K时,whose elements are second derivatives of the 

total potential energy evaluated at the saddle point. Diagona

lizing the force constant matrix, K^\ we can obtain the eigen

values, {一(入胛)2<0,(為°乎>0, 2 = 1,…，2N+1}. The illation 

for the determinant corresponding to Eq. (6a) is

2N
det(•欧))=-(權)F(瞻)2

i=l

—MaII(Di2(fc)ft)i2(A：)co22(fc)(022(A:) (28)
*>0

with

MXy Mxz

M&— MXy Myy My2 (29)

^xz Myj Mm 
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where values of elements, MPqf are calculated in the course 

of eliminating the upper elements of symmetric matrix, K®. 

Detailed expressions are given in the Appendix.

So far we have considered the normal mode analysis at 

the saddle point. Exactly the same procedure is repeated 

for the well minimum. In this case the coordinates of the 

adatom can be expressed as

g = (— 응 + 응cosO+q%, 응sin。+务, 如+么) (30)

where bw is the z-coordinate position of adatom at the well 

minimum and qxt qy, qz are displacements from the well mini

mum configuration. Repeating the same procedure as before, 

we can obtain the Hamiltonian expression for the well mini

mum as in Eq. (26) with different coefficients. In this case 

the second derivatives are evaluated at the well minimum. 

From the Hamiltonian for the well minimum, we can obtain 

the force constant matrix, K®, whose eigenvalues are {(為®)? 

>0, /=0,…，2N + 1}. The relation for the determinant corre

sponding to Eq. (6b) is

2N
det(K®)= II (為H(Di2(Zc)c0i2(^)a>22(/c)(D22W (31)

i' = 0 fe>0

where Mw is 3 by 3 matrix which is obtained exactly the 

same procedure as Mb.

Rate Constant. If we substitute Eqs. (28) and (31) in 

Eq. (4), then the rate of escape is represented as follows:

加$7=■슸;exp(—EJ如7) (32)

By comparing Eq. (2) with Eq. (32), we can obtain the surface 

diffusion parameters.

Results

The calculated values are given in Table 2 together with 

corresponding experimental values obtained by FIM experi

ment.4~6 The calculated Do values are slightly less than 10— 

which is the typical value of pre-exponential factor for the 

surface diffusion. When the size of surface is increased, the 

unstable mode frequency changes only slightly under the 

condition that the size of surface is not too small. When 

the size of the surface layer is increased from n by n to 

(n + 1) by (w + 1) for n larger than 6, the unstable mode 

frequency increased by the factor of 10-5 or 10-4. In our 

calculation, Do and Eb are calculated independently in cont

rast to the experimental procedure. If we permit the more 

surface atoms to relax in the calculation of activation energy, 

then the more accurate values of Eb can be obtained. But 

our main focus in this work is on the prefactor, Do, of the 

Arrhenius form of rate expression, which repgents the dy

namical aspects of the process while the activation energy 

reflects the static feature.

Some of the discrepancies between calculated and experi

mental values may result from the effects of the atoms in 

the second layer which we ignored. It can be argued that 

the interaction of the adatom with the second layer atoms 

located just below the adatom is more effective than with 

the edge atoms of the first layer. The presence of the second 

layer or several layers below the first layer may also influ
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ence the vibrating motions of first layer atoms even in the 

cases where the atoms below the first layer are fixed. One 

can test these effects in the computer simulation studies.

We are primarily interested in the application of the for

malism of the multidimensional TST using the Hamiltonian 

which involves the system-bath interactions. Our application 

is for the surface diffusion process on the solid surface. Con

trasted to the motions of solvent molecules in liquid phase, 

the motions of the atoms of the solid surface are relativ이y 

in order. As shown in this work, it is possible to determine 

the coefficients of the coupling between the system and bath 

explicitly for the motion of adatom on the s이id surface. In 

this aspect, Tsekov and Ruckenstein^ work29 h거s some rela

ted feat나res to this work. They considered Hamiltonian con

taining the linear coupling between the adsorbate and the 

substrate. But the effect of the phonon mode on the motion 

of the adsorbate is treated through one parameter, Debye 

frequency, a)D. We do not reduce the effect of the surface 

vibrations on the motion of the adsorbate to a few parame

ters. The characteristic feature of this work is that each vib

ration mode of the surface is considered in detail and the 

coefficient representing its interaction with the adsorbate is 

determined explicitly.

In the dynamic process considered here, the adsorbed 

atom is activated by the interaction with the surface vibra

tion, crosses over a barrier to a nearest binding site, and 

then relaxes at that site. These series of motions are activa

ted process and the barrier crossing step is a rare event. 

So our result is not applicable to the surface diffusion at 

high temperature. More meaningful comparison would be 

made with the molecular dynamics simulation results using 

the same potential function. The results of present calcula

tions are encouraging considering that the parameters used 

in the Morse potential are derived from bulk thermodynamic 

data and only the first layer of the surface is included.
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Appendix

To calculate the determinant of the force constant matrix, 

we eliminate the 3, m) elements of the matrix (1<m<3, 

彻 24). If we multiply the 彻th raw with -Am„/cos2(A) where 

Amn is the element of with raw and wth column of the matrix 

(Amn~Anm), and add thi응 product to the nth raw, then we 

can eliminate the (能，m) element. Repeating this procedure 

for l<«<3f 彻24, then determinant Mb is obtained as Eq. 

(29) with MPq as follows. Calculation of Mw is exactly the 

same.

峋=쏘
一湍布느临唐%9os(S)+心)/%cosQ•아

x {履 (&) * q*cos(D+아 Q) * Cp矽cos 侬싸
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X {。『(幻 言 C^sin(Zc • Id+苛(对言 C^sin(Xc • 4)}

3으V 爲 福日서成; 8osd)+e加 痔 아 COS@싸

시知) 力 C*cos(M)+g) 力 %cosd)} 

(=1 i=i

乙으感扁即籍 "in(时)+彻 * %sin(S)}

X {电2頂;)* C^sin(* - li)+瑟頂;)* q协sin(k • /：)}

where p=x, y, z and q=x, y, z.
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The resonance width may be directly determined by solving an eigenvalue equation for width operator which is 

derived in this work based on the method of complex scaling transformation. The width operator approach is advant거- 
geous to the conventional rotating coordinate method in twofold; 1) calculation can be done in real arithmetics and, 

2) so-called O-trajectory is not required for determining the resonance widths. Application to one- and two-dimensional 

model problems can be easily implemented.

Introduction

Resonance phenomena occur in various physico-chemical 

processes including electron-molecule scattering,1 simple 

gas-phase reactions such as H+H2.2 Thus they play impor

tant roles in understanding chemical reactions from the dy

namical viewpoint. In addition, attempts have been made to 

relate resonance states with the transition state of chemical 

reactions.3,4 The resonance phenomena are generally descri

bed as the sharp variations of cross sections at certain ener

gies Er (resonant energies) and are related to the existence 

of nearly bound states.5

Theoretically resonance can be accurately determined as 

the pole of scattering matrix.5 Evaluation of the scattering


