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X {。『(幻 言 C^sin(Zc • Id+苛(对言 C^sin(Xc • 4)}

3으V 爲 福日서成; 8osd)+e加 痔 아 COS@싸

시知) 力 C*cos(M)+g) 力 %cosd)} 

(=1 i=i

乙으感扁即籍 "in(时)+彻 * %sin(S)}

X {电2頂;)* C^sin(* - li)+瑟頂;)* q协sin(k • /：)}

where p=x, y, z and q=x, y, z.
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The resonance width may be directly determined by solving an eigenvalue equation for width operator which is 

derived in this work based on the method of complex scaling transformation. The width operator approach is advant거- 
geous to the conventional rotating coordinate method in twofold; 1) calculation can be done in real arithmetics and, 

2) so-called O-trajectory is not required for determining the resonance widths. Application to one- and two-dimensional 

model problems can be easily implemented.

Introduction

Resonance phenomena occur in various physico-chemical 

processes including electron-molecule scattering,1 simple 

gas-phase reactions such as H+H2.2 Thus they play impor

tant roles in understanding chemical reactions from the dy

namical viewpoint. In addition, attempts have been made to 

relate resonance states with the transition state of chemical 

reactions.3,4 The resonance phenomena are generally descri

bed as the sharp variations of cross sections at certain ener

gies Er (resonant energies) and are related to the existence 

of nearly bound states.5

Theoretically resonance can be accurately determined as 

the pole of scattering matrix.5 Evaluation of the scattering 
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matrix, however, requires very large amount of computation 

even for simple dynamical processes. Another approaches 

which probably require less computation are the complex 

L2 techniques including the rotating coordinate method6^8 

and the method by complex basis set.9""11 These methods 

are based on the change of boundary conditions imposed 

on the Schrodinger equation by introducing complex coordi

nates or complex basis set.

In the rotating coordinate method, real coordinates are 

transformed to complex coordinates by complex scaling and 

the Hamiltonian becomes complex accordingly. Since this 

transformation is unbounded from real to complex, the spec

trum of the Hamiltonian is changed. New complex energies 

are thus revealed while the discrete eigenvalues for bound 

states are retained as real by the transformation.12 As the 

rotation angle 0 is increased, complex energies associated 

with physical resonances (8曲 172) may be determined.

In the complex basis set method, the Hamiltonian is eva

luated in complex bases and the complex energies are obtai

ned from the diagonalization of the Hamiltonian. By varying 

the number of basis, stationary eigenvalues with respect to 

basis set size are found to be related with resonance states. 

Although these methods are r이atively simple and efficient 

compared with the scattering calculations, they may be still 

computationally very demanding for accurate determination 

of resonance widths. Evaluation of resonance width, r, may 

be greatly facilitated if the width operator is directly obtained 

and then an eigenvalue equation for the operator is solved. 

In this paper the width operator is explicitly derived based 

on the complex scaling formalism.

Complex Scaling Transformation

Complex scaling transformation rotates ordinary coordina

tes into complex plane by complex scaling operator (which 

is not unitary) U(9) given by

U(9)=exp(zS0) (1)

where 0 is rotation angle and an antihermitian operator S 

is given as follows;

(2)

With the scaling generator S given above, U becomes (U')f 

= U*. A similarity transformation, where the operator U sati

sfies above relation, is referred to as a restricted similarity 

transformation by which the Hamiltonian is changed to be 

complex symmetric.12

Application of U(0) to a coordinate x yields a complex coo

rdinate xeiQ and a wavefunction \|/W is transformed as

U(。)龄)=W(逆) (3)

The Hamiltonian H is scaled to H(0) as given below 

H(e)=U(O)HU(0)-1 (4)

where H(0) becomes complex symmetric as 0(0)^ =H(0)*.

Width Operator

Scaling the time-independent Schrodinger equation by U 

(0) yields the following

H(O)w(静)=取(如汨) (5)

which shows that the discrete eigenvalues are not affected 

by the transformation. However, new complex eigenvalues 

are produced from the diagonalization of H(0) since the tran

sformation is unbounded. The complex energies depend on 

0 as E(6) =Er(8)—汨「(8)/2]. The complex Hamiltonian can 

be decomposed as 1{(0)-^(0)+?11/0), where both the real 

and imaginary parts Hj?(0) and H/0) are hermitian satisfying 

the complex symmetric property of H(0). Since the diagonali

zation of H(G) yields complex energies Er(O)—沮0)/2] and 

both Hr(O) and H/0) are hermitian, we are led to the follow

ing eigenvalue equation for H/0)

HXe)v(0)= --쁭'w(O) (6)

where the coordinate dependence of the wavefunction is su- 

pressed. From Eq. (6), the width operator r(6) for given 

angle 9 may be defined as

r(0)--2HX9) (7)

Applying Baker-Housedorf theorem13 to Eq. (4), H(0) is 

obtained as an infinite sum of multiple commutator bracket 

between S and H both of which are real as follows

H(0)=exp(zSG)Hexp (—zSG)

= H+쁨[S, H]+ 譽[S, [S, H]]+ 警

[S, [S, [S, H]]] + -

= HR(e)+/HXO) (8)

Since the commutator bracket between the antihermitian S 

and the hermitian operator H is hermitian, all the commuta

tors in Eq. (8) are hermitian operators which satisfy the her- 

miticity of both Hr(。)and H/9). The imaginary part of Eq. 

(8) gives the detailed expression for H/G) as,

瑚0)=브[S, ES, [S, H工叮 +흠

[S, [S, [S, [S, [S, H]]]]]+ …
2n + l brackets

=/2务"辰,命

=冬击备件⑼

where the operator Cs2ntlH is a (2m + l)-multiple commutator 

between S and H which is defined as follows
2n+l brackets

Z"™—"" ——- - i

Cs2n+1H=[S, [S,…，ES, H]…]]

=*7)‘7思%声”-任,應§ (10)

The width operator r(0), which is hermitian, is obtained 

by combining Eqs. (7), (9), and (10) as below

r(0)= -2sin(9Cs)H (11)

where CSH is CsH=ES, Hl14 Eigensolutions for the opera
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tor r(0) are the widths as functions of 9 as shown below

F(0)S(0)=L(0)S(0) (12)

where r(0) is given in Eq. (11) and its eigenvalues rM(0) 

are real. To solve Eq. (12), consider a following eigenvalue 

equation for [S, H],

[S, H]|彻> =a品彻〉 (13)

The operator [S, H] can be evaluated explicitly using Eqs. 

(2) and (13) as 아iowh b이ow

[S,H]=—2[亳 H시 (14)

where V^(x) is V紡。c) = — (l/2)x(dV/dx) and 7(r) is 나le poten

tial energy of the system. Since [S, H] is bounded in certain 

regions of space, a number of its lower eigenstates may be 

bounded which are of our interest for the determination of 

resonance widths. If the multiple commutator for n>Q of 

Eq. (10) is applied to \m> which is the bound eigenstate 

of [S, H], the result will include the terms containing Sz|w/> 

for I upto 2n, Since \m> is bounded, S'l彻〉would become 

bounded and its norm, however, would be progressively 

smaller as I is increased (||S|彻>||V|||伽>||). We may there

fore truncate the infinite sum of Eq. (9) according to the 

desired accuracy. Taking the series upto n~lt the width 

operator r(0) can be approximated as follows

响她=-2陽[S, H]一夸(SCS, H] + [S, H]S2

-2SES, H]S)} (15)

The 0-dependent widths r„(9) may be obtained approxima

tely by evaluating the expectation values of r(0)a^r in terms 

of bound eigenstates of [S, H] given below

rn(0) M〈씨 r(0)어，시 n >

= 一2{。% — 普%<3団如> — <씨副& H]S|n>)} (16)

In order to determine the physical resonances from the 

0-dependent widths, r„(0), we have to find out the optimal 

value of 0 at which〈시 dF(0)/d이作>旧)is stationary with 

respect to variation of 0 around Oo implying15

〈지。쭜) m>l®o=O (17)

From Eq. (16), 0O may be obtained as

0o=(a„<n|S2|M>-<MlS[S, H]S|m> ) (18)

As the derivation shows, we only need to solve the eigen

value equation of ES, H] (Eq. (13)) in order to determine 

the resonance widths approximately with desired accuracy. 

Once the bound eigenstates \m> are obtained, S'|彻〉may 

be easily evaluated. All these calculations can be done in 

real arithmetics because of the hermitian nature of the ope

rators involved. In addition, G-dependent calculations may 

not be repeated which are required in the usual rotating 

coordinate method. Application to one- and two-dimensional 

problems can be easily implemented.

References

1. Rescigno, T.; McKoy, V.; Schneider, B. Eds., Electron- 

Molecule and Photon-Molecule Collisions (Plenum, New 

York, 1979).

2. Rom, N.; Moiseyev, N. J. Phys. Chem. 1994, 98, 3398.

3. Truhlar, D. G.; Garrett, B. C. J. Phys. Chem. 1972, 96, 

6515.

4. Zhao, M.; Rice, S. A. J. Phys. Chem. 1994, 98, 3444.

5. Taylor, J. R. Scattering Theory (Wiley, New York, 1972).

6. Obcemea, C.; Brandas, E. Ann. Phys. 1983, 151, 383.

7. Chatyidinmitriou-dreismann, C. A. Adv. Chem. Phys. 19 

91, 80f 201.

8. Chu, S. In Resonance in Electron -Molecular Scattering, van 

der Waals Complexes, and Reactive Chemical Dynamics', 

Truhlar, D. G. Ed., (American Chemical Society, Washi

ngton D. C., 1984).

9. Bardsley, J. N.; Junker, B. R. J. Phys. 1972, B5, L178.

10. Isaacson, A. D.; McCurdy, C. W.; Miller, W. H. Chem. 

Phys. 1978, 34, 311.

11. Issacson, A. D.; Miller, W. H. Chem. Phys. Lett. 1979, 

62, 374.

12. Lowdin, P. 0. Adv. Quantum Chem. 1988, 19, 87.

13. Merzbacher, E. Quantum Mechanics (Wiley, New York, 

1970).

14. Pechukas, P.; Light, J. C. J. Chem. Phys. 1966, 44, 3897.

15. Brandas, E.; Frolich, P.: Hehenberger, M. Int. Quantum 

Chem., XIV, 1978, 419.


