Synthesis and Properties of Molybdenum and Tungsten Oxo-Nitrosyl Complexes of Methylthioamidoxime

Soo Gyun Roh and Sang Oh Oh*

Department of Chemistry, Kyungpook National University, Taegu 702-701, Korea

(Received July 11, 1995)

ABSTRACT. The pentanuclear complexes have been obtained by the reactions of molybdenum(VI) and tungsten(VI) polynuclear complexes with molybdenum(0) and tungsten(0) dinitrosyl mononuclear complexes, and methylthioamidoxime. The prepared complexes [(n-Bu)2W2O4(MoO3)2(CH3SCH2CNH2)NO]2+ and [(n-Bu)2W2O4(MoO3)2(CH3SCH2CNH2)NO]3+ were determined by X-ray single crystal diffraction. Crystal data are as follows: Monoclinic, P21/a, a = 22.14(2) Å, b = 14.93(1) Å, c = 23.20(1) Å, β = 111.08(6)°, V = 7155(9) Å3, Z = 4. The geometric structure of the [Mo(NO3)5]2- unit is the formally cis type and C2v symmetry.
서 론

다핵산소금속체의 연구가 최근 활발히 진행되고 있는 분야이며, 축에 의해 여러 분야로 유용가능한 물질로 관심이 증대되고 있다. 다핵산소금속체의 표면의 작용기와는 금속산화물에 대한 반응 및 특성의 모델 연구에 흥미가 있다.1~7 구조와 기초 다중결합은 효소의 흥미, 필수의 생물학적인 순환 메커니즘에 중요하다.8 현재 대기오염의 주요인가 CO 다음인 NO를 황소조정모델로 전이금속 니트로산화물의 이상이 매우 중요하다.9 유사한 구조의 금속 산화물에서도 서로 다른 유도체 물질을 도입시키는 관심이 다핵산소금속체가 유망한 물질로 부상하고 있다. 이러한 불안정 산화 옹화도에 배위화학에서 새로운 화합물의 모델로 흥미가 있다. 유도체 다핵산소금속체와 산소 대신 무기질환, 유기질환 및 유기 금속 물질을 치환시키는 금속산화물과 금속의 상호작용은 폴리모양에 상당한 흥미를 갖는다.10~12 NO와 RN는 금속화합물의 결합에서 선택적 으로 작용하는 옵저비 및 기학적적 유사성을 갖는다.9 지금까지 배위화학 분야에서 알려진 화합물은 다소 상이한 결과를 보였다. [MoO4(NO)]과 [MoO4(NH3)4]에서 유사한 성질을 갖지만, [Mo(NH3)4]와 단위체가 포함된 사례(MoO4O2Me(NH3)4, [MoO4(NH3)4]과 같은 금속금속 결합 thể)는 물리적 특성이 잘 알려져 있고, [M(NO)4]와 단위체가 포함된 사례(MoO4O2Me(NH3)4, [MoO4(NH3)4][NO])의 결합체는 다중결합 (MoO4(NO)2)3\(\)3 유도체와 틱스텐 화합물은 지금까지 알려지지 않았다. 유기 diazenido 유도체인 [W(NH3)4]는 [W(NH3)4]2~ 단위체가 포함된 다핵산소 틱스텐 화합물이 배위화학 분야에서 얇게 쓰이고 있다. 최근 여러모의 연구에서 [W(NO)4]2~ 단위체가 포함하는 틱스텐 유도체를 보고하였다.10~11 이와 같은 결과로, [M(NO)4]2+ (M=Mo, W) 단위체와 [M(NH3)4]2+ (M=Mo, W) 단위체의 전 자를 끌어당기는 능력을 비교한 데 [M(NO)4]2+ (M=Mo, W) 단위체가 큰 것으로 추정되며, 틱스텐 화합물에서 미배위자의 성질을 알 수 있다. 본 연구의 [MoO4W(NO)]2+ 오색의 산소-니트로산 틱스텐 화합물은 지금까지 합성 및 그 성질에 관한 연구가 되어 있지 않았다. 따라서, 피오메탈었라도성 무 터를 사용하여 합성하였다. 또한 얻은 화합물(\(\text{Bu}_2\)N)\(\text{W}_2\text{O}_3\text{Mo}(\text{NO})_2\)\(\text{CH}_3\text{SCH}_2\text{C}(\text{NH}_2)\text{NOH})\(\text{CH}_3\text{SCH}_2\text{C}(\text{NH}_2)\text{NOH})\(\text{X}-\)신 단결합체에 의해 구조를 밝혔다. 합성한 화합물의 임계적인 효과, 양성자의 상호작용에 관한 연구 및 전자 물리창기는 섭포를 가진 니트로산화물을 포함하는 [M(NO)4]2+ (M=Mo, W) 단위체와 두 개의 이핵체 [M(NO)4]2+ (M=Mo, W)의 전자적 상호작용과 화학적 성질을 조사해 보고자 한다.

실 실험

시약 및 기기

시험에 사용한 시약은 1급 내지 특급으로 정제하지 않으나 사용하였으며, 사용한 용액에는 정제한 거동체를 이용하여 정제하였다. 단, 수소, 질소 순수 동리스는 Carlo Erba Model 1160 Elemental Analyzer를 사용하였고, 건조 흡수 스펙트럼은 Shimadzu의 UV-2655를 사용하였다. 액체형 스펙트럼은 Shimadzu IR 470 액체형 분광광도계를 이용하여 KBr 원반법으로 얻었고, 1H NMR 스펙트럼은 Varian Unity Plus 300 분광광도계를 이용하여 얻었고, NMR 측정은 메탄올-d4 용매를 사용하였다.

측정법

\[\text{Mo(NO)}_2\text{acac})_2\text{BF}_4\] (\(\text{BF}_4\)) \(\text{n=Bu}_2\text{N}\)\(\text{Mo(NO)}_2\)\(\text{Bu}_2\text{N}\)\(\text{Mo(NO)}_2\)\(\text{BF}_4\) 는 물리방법과 같은 방법으로 합성하였다.

리간도 형성

\(\text{CH}_3\text{SCH}_2\text{C}(\text{NH}_2)\text{NOH}\)은 메탄올 용해체에 메틸에서 아세토나트로나트로 유도체가 본질적으로 반응하여 메틸이와 아세토나트로나트로 유도체를 얻었다. 얻은 아미드을 실온 후에는 관찰하기, 얻은 모노산이 질소 동파시킨 후에 사용하였다.16

작업의 합성

\(\text{n-C}_6\text{H}_{11}\text{N})\text{MoO}_4\text{(NO)}_4\)(\(\text{CH}_3\text{SCH}_2\text{C}(\text{NH}_2)\text{NOH})\(\text{CH}_3\text{SCH}_2\text{C}(\text{NH}_2)\text{NOH})\) (1). 10 mL의 메 탄올 용지에 \(\text{n-Bu}_2\text{N}\)\(\text{n-MoO}_4\) \(1.07 \text{g}(0.5 \text{mmol})\)과 \(\text{Mo(NO)}_2\text{acac})_2\) \(0.35 \text{g}(1 \text{mmol})\)을 저어으면서 첨가한 다음 \(\text{CH}_3\text{SCH}_2\text{C}(\text{NH}_2)\text{NOH} 1.63 \text{g}(16 \text{mmol})\)과 1M \(\text{NH}_2\text{OH} 4 \text{mmol})을 순차적으로 첨가한 점리가
하였다. 이 현탁액을 24시간 동안 원래시켜서 초록색의 고체가 생성되었고, 얻은 초록색의 고체를 가스차원점로 분석하였다. 분석은 신선한 방치하면 잎자 초록색의 결정체가 얻어졌다. 이 결정체의 정점은 몇 주 동안 계수되었다. 총성물은 0.76 g이었고 [Mo(NO)₂(acac)]를 근거로 계산한 수용은 37%였다. 원소

분석 실험치(이론치) C: 31.50(31.21), H: 6.13 (5.96), N: 9.77(9.93); ¹H NMR(300 MHz, CD₂OD-d₂) δ 1.02(t, J=7.2, 7.2 Hz, 12H), 1.43(m, 8H), 1.66(m, 8H), 2.04(s, 3H), 2.16(s, 3H), 3.08(s, 2H), 3.24(m, 8H), 4.86(s, 2H); IR(KBr) 3400(m), 3134(m), 1752(s), 1657(m), 1553(s), 1423(m), 922(s), 896 (vs), 730(vs), 632(s) cm⁻¹; UV(MeOH) λmax(loge) 430(0.99), 638(1.62).

\[(\alpha-C_4H_9)NO]_2 \{[W_{2}Mo_{2}O_{18}(NO)]_{5}\} [CH_{2}SCH_2C(CH(NH)NO)]_{2} \] (2). 10 mL의 메탄올 용액에 \(\alpha-BuN\) \{W_{2}O_{18}\} 0.94 g(0.5 mmol), [Mo(NO)(acac)] 0.53 g(15 mmol) 및 \(\alpha-BuNBr\) 0.16 g (0.5 mmol)을 저어하면서 채가한 \(CH_2SCH_2C(CH(NH)NO) \) NOH 1.63 g(16 mmol)과 1M NH₂OH 용액 4 mL(4 mmol)을 채가한다. 이 현탁액을 48시간 동안 원래시켜서 초록색의 고체가 얻어졌고, 생성된 초록색의

Table 1. Summary of crystallographic and selected experimental data for \([\alpha-C_4H_9]NO]_2 \{[W_{2}Mo_{2}O_{18}(NO)]_{5}\} [CH_{2}SCH_2C(CH(NH)NO)]_{2} \] (2)

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>W_{2}Mo_{2}O_{18}N_{5}C_{11}H_{14}N</th>
<th>((C_{11}N_{5}H_{14}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_0/g/mol)</td>
<td>2044.924</td>
<td></td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>(P2_1/a) #14</td>
<td></td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>22.142</td>
<td></td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>14.933</td>
<td></td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>23.2601</td>
<td></td>
</tr>
<tr>
<td>(β) °</td>
<td>111.0860</td>
<td></td>
</tr>
<tr>
<td>(V) Å³</td>
<td>7155(9)</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

\(F(000) \) 994

\(\mu/cm^{-1} \) with Mo-Kα 68.9

\(D_{calc}(g/cm^3) \) 1.898

\(h_{max}(g/cm^2) \) 0.70930 Å, 0.71359 Å

\(S/N \) 92.97-99.98

\(Scan(°) \) 0-29

\(Scan(°/sec) \) 1.39-0.61 tan(θ)

\(2θ_{max}(°) \) 52.64

\(No. of reflections measured \) 15371

\(No. of reflections observed \) 6191

\(F > 3σ(F) \) No. of variable 714

\(R \) % 0.072

\(R_{w} \) % 0.063

\(Goodness of fit indicator \) 1.33

\(Maximum shift in final cycles \) less than 0.01

\(\text{Maximum shift in final cycles} \) less than 0.01

\(R = \sum|F_i| - |F_o|/\sum|F_o| \), \(R_w = \left(\sum|F_i| - |F_o|/\sum|F_o|^2 \right)^{1/2} \), where \(\sigma = |\sum F_o^2 + (0.01F_o^2 + 2.00)^{1/2} \). [Estimated standard deviation of an observation of unit weight: \(\sum(F_o - |F_o|)^2 / (N_e - N_s) \)², where \(N_e = \text{Number of observations} \) and \(N_s = \text{Number of variables} \).

초록색의 고체를 얻어하였다. 원소 분석 실험치(이론치) C: 25.67(25.84), \(h_{max}(g/cm²) \) 5.14(4.93), N: 8.15(8.22); ¹H NMR(300 MHz, CD₂OD-d₂) δ 1.02(t, J=7.5, 7.2 Hz, 12H), 1.43(m, 8H), 1.66(m, 8H), 2.04(s, 3H), 3.08(s, 2H), 3.25(m, 8H), 4.86(s, 2H); IR(KBr) 3380(m), 3155(m), 1758(s), 1659(s), 1631(vs), 1564(m), 1427 (m), 942(s), 503(s), 897(vs), 1743(s), 651(s) cm⁻¹; UV(MeOH) λmax(loge) 440(2.94), 638(1.74).

\[(\alpha-C_4H_9)NO]_2 \{[W_{2}O_{18}(NO)]_{5}\} [CH_{2}SCH_2C(CH(NH)NO)]_{2} \] (3). 10 mL의 메탄올 용액에 \(\alpha-BuN\) \{Mo(O)_{2}(acac)\} 0.53 g(0.25 mmol), [W(NO)(acac)CH(CN)₂]BF₄ 0.25 g(0.5 mmol)을 저어면서 채가한 \(CH_2SCH_2C(CH(NH)NO) \) NOH 1.22 g (12 mmol)과 1M NH₂OH 용액 2 mL(2 mmol)을 공

Journal of the Korean Chemical Society
Table 2. Atomic coordinates and B_{eq} isotropic thermal parameters* for the non-hydrogen atoms of \{n-C$_{4}$H$_{9}$N$_{2}$/[W$_{2}$O$_{7}$Mo$_{2}$O$_{11}$]CH$_{2}$SCH$_{2}$C(NH$_{3}$)HNO$_{2}$/CH$_{2}$SCH$_{2}$C(NH)$_{2}$NO$_{2}$/\}$_{2}$(2)

<table>
<thead>
<tr>
<th>Atom</th>
<th>x/a</th>
<th>y/b</th>
<th>z/c</th>
<th>$B_{eq}(\text{Å}^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>0.27738(6)</td>
<td>0.34243(9)</td>
<td>0.65720(6)</td>
<td>3.64(3)</td>
</tr>
<tr>
<td>W2</td>
<td>0.39980(6)</td>
<td>0.33394(9)</td>
<td>0.61503(5)</td>
<td>3.43(3)</td>
</tr>
<tr>
<td>W3</td>
<td>0.59955(5)</td>
<td>0.32366(9)</td>
<td>0.87583(5)</td>
<td>3.25(3)</td>
</tr>
<tr>
<td>W4</td>
<td>0.72055(6)</td>
<td>0.31228(5)</td>
<td>0.83715(5)</td>
<td>3.37(3)</td>
</tr>
<tr>
<td>Mo1</td>
<td>0.50295(9)</td>
<td>0.4479(1)</td>
<td>0.74671(9)</td>
<td>1.98(3)</td>
</tr>
<tr>
<td>S1</td>
<td>0.4554(6)</td>
<td>0.0388(7)</td>
<td>0.85665(6)</td>
<td>8.53(5)</td>
</tr>
<tr>
<td>S2</td>
<td>0.37235</td>
<td>0.5120(3)</td>
<td>0.8694(4)</td>
<td>7.00(9)</td>
</tr>
<tr>
<td>S3</td>
<td>0.63756</td>
<td>0.4875(8)</td>
<td>0.6237(4)</td>
<td>8.03(9)</td>
</tr>
<tr>
<td>S4</td>
<td>0.55377</td>
<td>0.0013(8)</td>
<td>0.6224(7)</td>
<td>10.7(4)</td>
</tr>
<tr>
<td>O1</td>
<td>0.21967</td>
<td>0.4251(2)</td>
<td>0.6533(7)</td>
<td>2.54(4)</td>
</tr>
<tr>
<td>O2</td>
<td>0.23498</td>
<td>0.2462(1)</td>
<td>0.6612(7)</td>
<td>2.63(3)</td>
</tr>
<tr>
<td>O3</td>
<td>0.41549</td>
<td>0.2411(1)</td>
<td>0.5775(8)</td>
<td>3.83(5)</td>
</tr>
<tr>
<td>O4</td>
<td>0.40446</td>
<td>0.423(1)</td>
<td>0.5691(8)</td>
<td>3.54(5)</td>
</tr>
<tr>
<td>O5</td>
<td>0.59847</td>
<td>0.413(1)</td>
<td>0.9222(7)</td>
<td>2.44(4)</td>
</tr>
<tr>
<td>O6</td>
<td>0.57618</td>
<td>0.233(1)</td>
<td>0.9122(7)</td>
<td>2.65(3)</td>
</tr>
<tr>
<td>O7</td>
<td>0.7858(7)</td>
<td>0.393(1)</td>
<td>0.8638(7)</td>
<td>2.74(4)</td>
</tr>
<tr>
<td>O8</td>
<td>0.7575(7)</td>
<td>0.218(1)</td>
<td>0.8011(6)</td>
<td>2.23(3)</td>
</tr>
<tr>
<td>O9</td>
<td>0.3045(7)</td>
<td>0.326(1)</td>
<td>0.8886(6)</td>
<td>1.83(4)</td>
</tr>
<tr>
<td>O10</td>
<td>0.6922(7)</td>
<td>0.305(1)</td>
<td>0.9051(6)</td>
<td>2.03(3)</td>
</tr>
<tr>
<td>O11</td>
<td>0.47666</td>
<td>0.3449(9)</td>
<td>0.821(6)</td>
<td>1.32(2)</td>
</tr>
<tr>
<td>O12</td>
<td>0.52079</td>
<td>0.3421(3)</td>
<td>0.8075(7)</td>
<td>1.73(2)</td>
</tr>
<tr>
<td>O13</td>
<td>0.3710(7)</td>
<td>0.242(1)</td>
<td>0.6825(7)</td>
<td>2.04(3)</td>
</tr>
<tr>
<td>O14</td>
<td>0.36166</td>
<td>0.4220(9)</td>
<td>0.6752(6)</td>
<td>1.33(3)</td>
</tr>
<tr>
<td>O15</td>
<td>0.63986</td>
<td>0.460(1)</td>
<td>0.817(4)</td>
<td>1.33(3)</td>
</tr>
<tr>
<td>O16</td>
<td>0.48796</td>
<td>0.603(1)</td>
<td>0.6619(8)</td>
<td>3.75(5)</td>
</tr>
<tr>
<td>O17</td>
<td>0.5344(9)</td>
<td>0.599(1)</td>
<td>0.8358(9)</td>
<td>3.85(5)</td>
</tr>
<tr>
<td>O18</td>
<td>0.62147</td>
<td>0.228(1)</td>
<td>0.8065(9)</td>
<td>1.83(4)</td>
</tr>
<tr>
<td>N1</td>
<td>0.48968</td>
<td>0.539(1)</td>
<td>0.6915(8)</td>
<td>1.63(3)</td>
</tr>
<tr>
<td>N2</td>
<td>0.52378</td>
<td>0.538(1)</td>
<td>0.8028(9)</td>
<td>1.54(4)</td>
</tr>
<tr>
<td>N3</td>
<td>0.31558</td>
<td>0.367(1)</td>
<td>0.7498(8)</td>
<td>1.84(4)</td>
</tr>
<tr>
<td>N4</td>
<td>0.6889(8)</td>
<td>0.346(1)</td>
<td>0.7444(7)</td>
<td>1.4(4)</td>
</tr>
<tr>
<td>N5</td>
<td>0.4028(6)</td>
<td>0.434(1)</td>
<td>0.7277(7)</td>
<td>1.3(4)</td>
</tr>
<tr>
<td>N6</td>
<td>0.6021(6)</td>
<td>0.421(1)</td>
<td>0.7561(7)</td>
<td>1.3(3)</td>
</tr>
<tr>
<td>N7</td>
<td>0.4112(6)</td>
<td>0.225(1)</td>
<td>0.724(8)</td>
<td>1.4(4)</td>
</tr>
<tr>
<td>N8</td>
<td>0.3228(6)</td>
<td>0.132(1)</td>
<td>0.759(1)</td>
<td>2.7(5)</td>
</tr>
<tr>
<td>N9</td>
<td>0.3524(6)</td>
<td>0.215(1)</td>
<td>0.7482(8)</td>
<td>1.8(4)</td>
</tr>
<tr>
<td>N10</td>
<td>0.6532(7)</td>
<td>0.113(1)</td>
<td>0.7558(9)</td>
<td>2.5(5)</td>
</tr>
<tr>
<td>N11</td>
<td>0.2451(3)</td>
<td>0.092(1)</td>
<td>0.974(1)</td>
<td>3.0(6)</td>
</tr>
<tr>
<td>N12</td>
<td>0.231(1)</td>
<td>0.139(2)</td>
<td>0.449(1)</td>
<td>4.2(6)</td>
</tr>
<tr>
<td>C1</td>
<td>0.3768(8)</td>
<td>0.407(1)</td>
<td>0.775(9)</td>
<td>1.1(4)</td>
</tr>
<tr>
<td>C2</td>
<td>0.631(1)</td>
<td>0.298(2)</td>
<td>0.729(1)</td>
<td>1.6(4)</td>
</tr>
<tr>
<td>C3</td>
<td>0.390(1)</td>
<td>0.178(2)</td>
<td>0.775(1)</td>
<td>2.6(4)</td>
</tr>
<tr>
<td>C4</td>
<td>0.432(1)</td>
<td>0.155(2)</td>
<td>0.841(1)</td>
<td>3.8(7)</td>
</tr>
<tr>
<td>C5</td>
<td>0.511(2)</td>
<td>0.088(3)</td>
<td>0.826(2)</td>
<td>7.0(1)</td>
</tr>
<tr>
<td>C6</td>
<td>0.496(1)</td>
<td>0.148(2)</td>
<td>0.844(1)</td>
<td>2.6(8)</td>
</tr>
<tr>
<td>C7</td>
<td>0.465(3)</td>
<td>0.542(3)</td>
<td>0.935(1)</td>
<td>8.1(2)</td>
</tr>
</tbody>
</table>

*Numbers in parentheses are the estimated standard deviations in the units of the least significant figure given for the corresponding parameter. B_{eq}'s for anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as \(A/3[\alpha^2\beta_{11} + \beta^2\beta_{22} + \gamma^2\beta_{33} + (\alpha\beta\cos\gamma)\beta_{12} + (\alpha\gamma\cos\beta)\beta_{13} + (\beta\gamma\cos\alpha)\beta_{23}]\).

결정구조
작용함성에서 얻은 적당한 크기의 초록의 단결정

1996, Vol. 40, No. 1
결과 및 고찰

합성의 혼성. 선행된 혼성한 방법Wy와 유사하며 본 연구의 합성은 풀리브레이나 탕스텐 6과 작용하여 전자 빨도는 농도에 있는 [M(NO)2]2+(M=Mo, W) 단위체를 삽입시킨 얻었다. 반응과정은 다음과 같다.

(1) \((\nu-Bu_2N)_3[\alpha-MoO_2] + 2[Mo(NO)_2(acac)] + 8RC(NH)NOH \rightarrow 2(\nu-Bu_2N)_3[MoO_2_2(\text{acac})]_2 + 8acacH + 2H_2O \)

(2) \(2(n-Bu_2N)_3[\nu-WO_2] + 3[Mo(NO)_2(acac)] + 2n-Bu_2NBr + 12RC(NH)NOH \rightarrow 3(n-Bu_2N)_3[W_2O_2(\text{acac})]_2 + 6MoO_2_2 + 12RC(NH)NOH + 8acacH + 2H_2O + 2H^+ + 2Br^- \)

(3) \((n-Bu_2N)_3[\nu-MoO_2] + 2[\nu(WO)_2(acac)]_2(\text{CH}_3\text{CN})_2 + 8RC(NH)NOH \rightarrow 2(n-Bu_2N)_3[M_2W_2O_2(\text{acac})_2] + 8acacH + 2H_2O + 2H^+ + 2BF_4^- + 4CH_3\text{CN} \)

\([R=\text{CH}_3\text{SCH}_2] \)

신소나트로실 다크산소금속체는 나 탄족용수소합물을 출발하여 하이드로 니트로실의 탄소 및 \([\text{M(O)}_2]\)2+ (M=Mo, W) 단위체를 이 용한 합성이 많았다. 얻은 물질은 \([\text{M(O)}_2]\)2+ (M=Mo, W) 단위체를 포함한 합성체이고, \([\text{MO}_{2}]^{2+}\) (M=Mo, W) 단위체가 포함한 다크 산소나트로실 금속체를 합성하였다. 이런 합성은 반응과정(1)으로 용이하게 얻었다. 다크산소나트로실은 선행 방법으로 반응과정(2)으로 합성하였다. 반응과정(3) 으로 풀리브레(IV) 합성과 탕스텐(V) 합성에서 얻은 \([\text{M}_{2}\text{O}_{2}\text{W(NO)}_{2}]^{2+}\)을 얻었다. 합성된 산소나트로실 합성물에 대한 인조분석결과는 합성의 합성 부분에 있고 측정치와 계산치가 좋은 일치율이 보였다.

적외선 흡수 스펙트럼. 합성된 합성물의 적외선 스펙트럼 메터는 합성물의 합성 부분에 요약하였다. 합성한 합성물의 포 함하는 \([\text{M(NO)}_2]\)2+ (M=Mo, W) 단위체의 두 개 양단기 NO는 두 곳에서 강한 흡수와 두 가지 나타나는 것으로 보아 높이 위치로 배치되었다. NO의 두 곳의 강한 흡수는 대칭 산소간의 카테고리 신축진동과 비대칭 신축진동으로 1758 ~ 1711 cm\(^{-1}\)에서 각각 나타났다. 질자의 \([\text{M(NO)}_2]\)2+ 단위체의 흡수는 \(\nu(\text{NO})\)와 \(\nu(W(\text{NO})_2)\)로 다형체와의 흡수와 \(\nu(NO)\)의 차이가 41~47 cm\(^{-1}\)로 나타났고, 풀리브레와 탕스텐의 전 소에 대한 고유의 흡수와 반응물에 있으면서 파이 결합의 세기는 탕스텐에서 강하게 나타나는 것을 추정할 수 있다. 펄리브레의 NH의 신축진동은 3460 ~ 3275 및 3185 ~ 3110 cm\(^{-1}\)에서 나타났다. NH의 전자 클로징은 1557 ~ 1550 및 1470 ~ 1430 cm\(^{-1}\)에서 나타났다. 스펙트럼 상 1690 ~ 1660 cm\(^{-1}\)에 나타난 것은 \(C = N\)으로 추정되고, 이는 쓰리비 이온의 존재를 제시한다. 금속과 탄소간의 산소간 전자은 940 ~ 863 cm\(^{-1}\)에서 나타났고, 금속과 산소간의 산소간 전자은 780 ~ 616 cm\(^{-1}\)에서 나타난다. 다크산소나트로실 금속체로 판단된다.

전자 흡수 스펙트럼. 합성한 합성물에 포함된 \([\text{M(NO)}_2]\)2+ (M=Mo, W) 단위체에 대한 전자 흡수 스펙트럼의 데이터는 합성물의 합성 부분에 있다. Enemark\(^{15}\) 등이 제시한 C\(_p\) 원자체도 도래하는 방법을 사용하여 해석하기, 사리성상 양자에는 나타나는 두 개의 피크는 물질에서 \([\text{M(NO)}_2]\)2+ (M=Mo, W) 단위체가 포함되어 있는 것으로 알려졌다. 얻은 합성물은 637 ~
Table 3. Bond lengths (Å) and angles (°) for the non-hydrogen atoms of [(t-C$_5$H$_5$)$_2$N][W$_2$(Mo(NO)$_3$)(CH$_3$SCH$_2$C(NH)NO)$_2$]$_2$.

<table>
<thead>
<tr>
<th>Bond lengths (Å)</th>
<th>W(1)-O(1)</th>
<th>1.72(2)</th>
<th>W(2)-O(3)</th>
<th>1.73(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(1)-O(2)</td>
<td>1.75(2)</td>
<td>W(2)-O(4)</td>
<td>1.73(2)</td>
<td>W(1)-O(9)</td>
</tr>
<tr>
<td>W(1)-O(10)</td>
<td>2.43(2)</td>
<td>W(2)-O(11)</td>
<td>1.85(1)</td>
<td>W(1)-O(14)</td>
</tr>
<tr>
<td>W(1)-N(3)</td>
<td>2.04(2)</td>
<td>W(2)-N(14)</td>
<td>2.29(3)</td>
<td>W(3)-O(5)</td>
</tr>
<tr>
<td>W(3)-O(6)</td>
<td>1.73(2)</td>
<td>W(4)-O(7)</td>
<td>1.72(2)</td>
<td>W(3)-O(10)</td>
</tr>
<tr>
<td>W(3)-O(12)</td>
<td>1.89(1)</td>
<td>W(4)-O(15)</td>
<td>2.11(1)</td>
<td>W(3)-O(13)</td>
</tr>
<tr>
<td>W(3)-O(15)</td>
<td>2.28(2)</td>
<td>W(4)-O(19)</td>
<td>2.46(2)</td>
<td>W(3)-O(19)</td>
</tr>
<tr>
<td>Mo(1)-O(11)</td>
<td>2.08(1)</td>
<td>Mo(1)-N(2)</td>
<td>1.81(2)</td>
<td>Mo(1)-O(12)</td>
</tr>
<tr>
<td>Mo(1)-N(11)</td>
<td>1.82(2)</td>
<td>Mo(1)-N(6)</td>
<td>2.16(2)</td>
<td>O(17)-N(1)</td>
</tr>
<tr>
<td>S(1)-C(4)</td>
<td>1.81(3)</td>
<td>S(3)-C(8)</td>
<td>1.90(3)</td>
<td>S(1)-C(5)</td>
</tr>
<tr>
<td>S(2)-C(6)</td>
<td>1.83(3)</td>
<td>S(4)-C(11)</td>
<td>1.78(3)</td>
<td>S(2)-C(7)</td>
</tr>
<tr>
<td>S(3)-C(9)</td>
<td>1.77(4)</td>
<td>S(4)-C(12)</td>
<td>1.36(3)</td>
<td>O(13)-N(7)</td>
</tr>
<tr>
<td>O(14)-N(5)</td>
<td>1.42(2)</td>
<td>O(8)-C(3)</td>
<td>1.33(2)</td>
<td>O(15)-N(6)</td>
</tr>
<tr>
<td>O(19)-N(9)</td>
<td>1.33(2)</td>
<td>O(10)-C(10)</td>
<td>1.33(3)</td>
<td>N(3)-C(1)</td>
</tr>
<tr>
<td>N(4)-C(2)</td>
<td>1.30(3)</td>
<td>C(2)-C(8)</td>
<td>1.50(3)</td>
<td>N(5)-C(1)</td>
</tr>
<tr>
<td>N(6)-C(2)</td>
<td>1.31(3)</td>
<td>C(10)-C(11)</td>
<td>1.47(6)</td>
<td>N(11)-C(13)</td>
</tr>
<tr>
<td>N(11)-C(17)</td>
<td>1.53(3)</td>
<td>N(12)-C(23)</td>
<td>1.55(4)</td>
<td>N(11)-C(21)</td>
</tr>
<tr>
<td>N(11)-C(25)</td>
<td>1.57(4)</td>
<td>N(12)-C(37)</td>
<td>1.53(4)</td>
<td>N(14)-C(14)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.50(5)</td>
<td>C(29)-C(30)</td>
<td>1.45(5)</td>
<td>C(14)-C(15)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.45(6)</td>
<td>C(31)-C(32)</td>
<td>1.29(6)</td>
<td>C(17)-C(18)</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.52(3)</td>
<td>C(33)-C(34)</td>
<td>1.51(6)</td>
<td>C(19)-C(20)</td>
</tr>
<tr>
<td>C(19)-C(21)</td>
<td>1.51(4)</td>
<td>C(35)-C(36)</td>
<td>1.42(8)</td>
<td>C(21)-C(22)</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.54(5)</td>
<td>C(37)-C(38)</td>
<td>1.59(5)</td>
<td>C(22)-C(23)</td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.49(5)</td>
<td>C(38)-C(39)</td>
<td>1.49(6)</td>
<td>C(23)-C(24)</td>
</tr>
<tr>
<td>C(25)-C(26)</td>
<td>1.55(4)</td>
<td>C(41)-C(42)</td>
<td>1.51(4)</td>
<td>C(26)-C(27)</td>
</tr>
<tr>
<td>C(27)-C(28)</td>
<td>1.42(6)</td>
<td>C(43)-C(44)</td>
<td>1.36(7)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Continued

<table>
<thead>
<tr>
<th>Bond angles (°)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-W(1)-O(2)</td>
<td>104.2(8)</td>
</tr>
<tr>
<td>O(1)-W(1)-O(9)</td>
<td>164.7(7)</td>
</tr>
<tr>
<td>O(1)-W(1)-O(13)</td>
<td>169.9(7)</td>
</tr>
<tr>
<td>O(1)-W(1)-O(14)</td>
<td>99.3(7)</td>
</tr>
<tr>
<td>O(1)-W(1)-O(9)</td>
<td>106.0(8)</td>
</tr>
<tr>
<td>O(1)-W(1)-O(14)</td>
<td>155.5(6)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(9)</td>
<td>96.7(8)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(14)</td>
<td>74.0(6)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(11)</td>
<td>140.5(6)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(11)</td>
<td>72.1(7)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(10)</td>
<td>103.7(9)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(10)</td>
<td>100.5(7)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(12)</td>
<td>160.3(7)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(15)</td>
<td>105.6(7)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(12)</td>
<td>107.0(7)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(15)</td>
<td>111.4(6)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(15)</td>
<td>110.7(6)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(12)</td>
<td>156.8(7)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(15)</td>
<td>112.0(4)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(12)</td>
<td>112.0(4)</td>
</tr>
<tr>
<td>O(2)-W(1)-O(15)</td>
<td>112.0(4)</td>
</tr>
</tbody>
</table>

Table 3. Continued

<table>
<thead>
<tr>
<th>Bond angles (°)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(13)-N(11)-C(25)</td>
<td>105.0(2)</td>
</tr>
<tr>
<td>C(17)-N(11)-C(21)</td>
<td>107.0(2)</td>
</tr>
<tr>
<td>C(17)-N(11)-C(25)</td>
<td>111.0(2)</td>
</tr>
<tr>
<td>C(21)-N(11)-C(25)</td>
<td>106.0(2)</td>
</tr>
<tr>
<td>C(29)-N(12)-C(33)</td>
<td>111.0(3)</td>
</tr>
<tr>
<td>C(29)-N(12)-C(37)</td>
<td>113.0(3)</td>
</tr>
<tr>
<td>C(29)-N(12)-C(41)</td>
<td>114.0(3)</td>
</tr>
<tr>
<td>C(33)-N(12)-C(37)</td>
<td>116.0(3)</td>
</tr>
<tr>
<td>C(33)-N(12)-C(41)</td>
<td>116.0(3)</td>
</tr>
<tr>
<td>C(37)-N(12)-C(41)</td>
<td>114.0(3)</td>
</tr>
<tr>
<td>C(33)-N(12)-C(41)</td>
<td>114.0(3)</td>
</tr>
<tr>
<td>C(37)-N(12)-C(41)</td>
<td>114.0(3)</td>
</tr>
</tbody>
</table>

Fig. 1. ORTEP view of [W6O12Mo(NO3)2(CH3SCH2C(NH)NO)3]2- ion.

宋의은 [W6O12Mo(NO3)2(CH3SCH2C(NH)NO)3]2-에 대한 결정구조는 Fig. 1에 나타내었다. 목표의 구조는 두 개의 아체 탈산체 및 [W6O12(CH3SCH2C(NH)NO)3]2-와 [Mn(NO3)]2- 단위체가 일치하고 상호간의 결합에 영향을 미치는 3.4-3.5의 계통으로 오랫동안 자료를 형성하였다.
[Mo(NO)]^{2+} 단위체는 두 개의 이온체 [W_{2}O_{5}]^{2+} 골격사이에 위치하여 각각의 골극은 모두 비교적 평면체로 구성되어 있다. 이전 예제의 오타와 동일한 식으로 형성된 것은 다른 학술의 골극에 볼 수 없는 특이성을 가지고 있다.

[Mo(NO)]^{2+} 단위체는 N(1)-Mo-(2)가 83.46(8)°로 시스형으로 되어 있으며, Mo(1)-N(1)-O(17)와 Mo (1)-N(2)-O(18)는 각각 171.0(1), 175.0(2)°로 거의 선형구조이다. N-O의 결합길이는 1.17(3) Å, 1.16(3) Å으로 NO의 삼중결합 결합이 1.06 Å와 일반적인 삼중결합 길이 1.20 Å보다 약간 짧다. 아미드유新形势의 배위방향은 두 가지 형태를 가진다. 하나는 쓰비트 아미도 형태로 아미드유新形势의 유모성의 산소가 두 개의 니트로실에 다리결합으로 배위되어 있다. 다른 하나는 아미드유新形势의 아미드가 니트로실에 배위되어 있고, 유모성의 산소는 [Mo(NO)]^{2+} 단위체에 배위되어 있고, 그리고 산소는 두 개의 니트로실에 다리결합되어 있다. 몰리브덴과 텅스텐에 배위하는 두 가지 포화도 배위되어 있지만 서로 다른 결합길이와 결합각을 가진다.

원소분석과 회색상, 전자 흡수, 1H NMR 스펙트럼, X-선 단정량 분석법으로 합성한 학술을 정리해 보면 [Mo(NO)]^{2+} (M=Mo, W) 단위체의 두 개의 니트로실 끝이 시스 형태로 배위되어 있고, (w-BuN)_{2}[Mo_{2}O_{6}(M'NO)_{2}(CH_{2}SCH_{2}CH_{2}C(NH)_{2}H)]_{2} (M, M'=Mo; M=W, M'=Mo; M=Mo, M'=W) 학술은 앞서 연구한 학술과 같은 구조를 이루며, 전자 흡수와 니트로실 흡수 능력과 같은 [Mo(NO)]^{2+} (M=Mo, W) 단위체는 몰리브덴과 니트로실 학술의 특이성을 잘 나타내는 데 도움이 될 수 있을 것으로 생각된다.

본 연구는 교육부 기초과학 연구비에 의한 것이며, 이에 감사를 드립니다.

인용 문헌

18. Calculations were performed with: *Structure Determination System, Molsoft Enraf-Nonius: The Netherlands, 1990.*

