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ment disorder associated with degeneration of

INTRODUCTION dopaminergic neurons in the substantia nigra and
a corresponding loss of dopamine(DA)-containing
Parkinson’s disease(PD) is a common move- nerve terminals in the basal ganglial’B). Dege-
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neration of the nigrostriatal pathway is accom-
panied by large decreases in a number of corres-
ponding biochemical markers, including DA
6-10) 2,11, 12) :

, tyrosine hydroxy-

1268 9), and the DA

, dopa decarboxylase

lase® 13), DA metabotites

transporter " 11n

Noninvasive imaging and quantitation of the
loss of dopaminergic nerve terminals in PD have
evolved over the last decade by the use of
6-L-[®*Flfluoro-DOPA([**FIFDOPA) and positron
emission tomography(PET)® . This method has
permitted several studies of the reduction in DA
synthesis in PD, its relationship to neurological

22, 23, 25) .
, and comparison of

18, 23, 24, 27, 29)

parameters of disease
PD with other movement disorders

The DA reuptake site that mediates reuptake
of DA into presynaptic nerve terminals following
its release is an active, sodium gradient-driven
membrane transporter spanning the plasma
membrane of dopaminergic terminals. It is the
function of the transporter to rapidly deplete the
intrasynaptic DA during a DA surge and to
maintain normal DA concentrations in the intra—
and extracellular spaces at other times. Cocaine
blocks the DA transporter, thus increasing the
levels of intrasynaptic doapmine, which may
account for the central nervous system stimulant

30-32 .
), Recently, a series of

actions of the drug
cocaine analogues, including CFT [2B-carbome-
thoxy-3B-(4-fluorophenyDtropane; also designated
WIN 35428], B-CIT [2B-carbomethoxy-3B(4-
iodophenyl)tropane; also designated RTI-55] and
isopropyl-B-CIT(also designated RTI-121), have
been developed with high affinity for the DA

33-43)

transporter , and some have been labeled with

positron emitting and single-photon emitting
isotopes to permit imaging by PET and single-
photon emission computed tomography(SPECT)
42-46)

In vitro binding study showed that B-CIT, the
iodo analog of CFT, has a high affinity for the

DA and serotonin(5-hydroxytryptamine: 5-HT)
transporters from baboon brain, with an IC50 of
16 nM against [PHICFT and 38 nM against
PHlparoxetine™. ®I-Labeled B-CIT has been used
in SPECT imaging for visualization of binding to
DA and 5-HT transporters in the baboon brain in

4849 I vivo displacement studies in the

vivo
monkey demonstrated that striatal uptake of ['*I]
B-CIT was primarily due to DA transporters
while uptake in hypothalamus-midbrain areas was
mainly associated with 5-HT transporters%’ 30,
Initial studies in human subjects confirmed the

high and prolonged levels of activity in striatum

. and demonstrated significant reductions of tracer

uptake in patients with PD ™ These studies
suggest that ['®IIB-CIT SPECT imaging is a
promising technique for the diagnosis and eval-
uation of PD.

Attempts to estimate receptor binding charac-
teristics in vivo using PET and SPECT have
followed a variety of approaches. One method is
to assume a particular model in which a mea-
sured plasma input function governs the uptake
of the labeled ligand. Model parameters can then
be determined by a nonlinear least-square fit to
Graphical method of
analysis applicable to ligands that are trapped in

the experimental data®.

tissue for the duration of the experiment have
been developed and applied by several investi-

51"%)  These model-based methods usually

gators
require arterial sampling and repeated scans,
procedures that are not easily implemented in the
clinical setting. The simplest procedure is using
the ratio among different regions(ie, receptor-
rich versus receptor-poor region) or the slope of
the ratio over scanning time, which is a measure
of the specific binding or the rate of binding of
the ligand in limited conditions™.

The aim of the present study was: 1) to
characterize the pharmacokinetics and regional
distribution of [*®IIB-CIT in healthy subjects and
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PD patients, 2) to evaluate the correlation bet-
ween SPECT measures of [“IIB-CIT binding and
motor symptoms in patients with PD, and 3) to
validate the use of simplified ratio method for the
assessment of [‘®I1B-CIT binding by comparing

with a more complete tracer kinetic approach.

METHODS

1. Synthesis of ['**I1B-CIT

['*®18-CIT was prepared from the correspon-

ding tributylstannyl precursor(Research Biochemi-
cals International, Natick, MA) and high radionu-
["®[INal (Korea Atomic Energy
Research Institute,

clidic purity
Seoul, Korea), using the
method described by Zea-Ponce et al.(1995) with
minor modification. ["*118-CIT was obtained in an
average radiochemical yield of 64%=*12%(n=21,
mean=*s.d) and a radiochemical purity of 96% =
4%. Although specific activity of the radiotracer
could not be measured because of limit of UV

detection with our HPLC system, it might be

higher than 67,000 Ci/mmol based on the
literature™.
2 . Subjects

Thirty patients [13 males and 17 females; age
59£9 yr(meants.d)] with idiopathic PD(Hoehn-
Yahr stages 1-3) and 6 age-matched healthy
controls (4 males and 2 females; age 58*5 yr)
were enrolled in the study following the provision
of informed consent. All patients had symptoms
that were responsive to L-dopa and had at least
three of the following symptoms: resting tremor,
bradykinesia, rigidity, and postural instability.
Fourteen of the patients were recent-onset
patients and were not receiving any dopaminergic
medication before the SPECT scan. The rest of
the patients were at an advanced stage of PD
and were on treatment with L-dopa, DA agonist,

L-deprenyl, amantadine and anticholinergic drugs

in various combinations. Each patient was
evaluated at drug-off state using the Hoehn-Yahr
stage and the Unified Parkinson’s Disease Rating
Scale(UPDRS)™.

the patients are summarized in Table 1. The

The clinical characteristics of

healthy controls were taking no medications and
were free of serious medical illnesses by physical

examination and laboratory testing.

3. Data Acquisition

SPECT studies were performed using a three-
headed Triad XLT system(Trionix Research La-
boratory, Twinsburg, OH) equipped with medium-
energy collimators. Images were acquired with
each head rotating 120° in 3° steps, creating 120
raw image sets. Antiparkinsonian medications
were discontinued for 2 days prior to the
scanning. In order to minimize radioiodine uptake
in the thyroid gland, each patient was given oral
Lugol’'s solution, 1 drop tid, for 1 day prior and
for 3 days after intravenous administration of
["®*1]B-CIT. Fiducial markers containing ~7 gCi
of I were attached to the skin along the can-
thomeatal line for realignment of all images from
each subject in a plane parallel to the can-
thomeatal line. Each subject received an intra-
venous bolus injection of 185-370 MBq [*IIB-
CIT. In all of the healthy controls and 14 of the
patients, a total of 15 SPECT scans was obtained
for each subject over a 24 hr period following
injection: ten sequential scans of 10 min starting
immediately after injection, followed by scans of
20-30 min at 3 hr, 4 hr, 6 hr, 12 hr, and 24 hr
postinjection. Based on the time-activity curve
from serial scans, the rest of the patients were
scanned at 12 hr and 24 hr postinjection. Images
were acquired with a 10% symmetric window
centered at 159 keV, reconstructed with a But-
terworth filter(power=7; cutoff=04 cyc/cm) and
displayed in 128X 128 matrix(pixel size = 3.56X%

356 mm with a slice thickness of 356 mm).
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Table 1. Clinical Characteristics of Patients

A UPDRS
Patient Sex .o Disease Motor Motor
() cration(mo) -y Total Motor ADL subscales”, Right subscales”, Left
1 F 80 9% 3 6l 39 18 13 12
2 F 59 51 15 52 34 14 0 21
3 F 60 48 1 20 14 4 12 0
4 F 60 51 2 30 24 6 2 14
5 M 40 5 2 20 14 4 3 10
6 F 61 27 1 17 8 9 0 7
7 F 57 36 2 27 23 4 10 11
8 M 51 8 2 37 28 9 17 7
9 M 60 2 2 31 23 7 3 14
10 F 73 12 1.5 30 21 5 0 15
11 F 63 17 3 59 43 15 11 16
12 F 55 55 1.5 23 19 4 0 15
13 F 59 48 25 42 32 9 14 9
14 F 55 12 2 15 11 4 3 6
15 M 55 30 25 41 34 5 6 12
16 F 77 65 25 51 40 10 11 18
17 M 50 29 2 27 22 4 14
18 M 58 28 NA NA NA NA 14 8
19 M 54 26 NA NA NA NA 0 3
20 M 69 16 NA NA NA NA 9 3
21 F 39 18 NA NA NA NA 7 0
22 M 53 58 25 55 43 10 19 12
23 M 45 NA NA NA NA NA NA NA
24 M 57 10 2 36 30 6 17 5
2 'F 63 24 NA NA NA NA NA NA
26 F 58 42 25 49 35 12 11 11
27 F 56 24 2 50 38 9 18 11
28 M 71 13 25 47 35 10 16 7 .
29 F 57 48 3 65 49 14 22 10
30 M 69 12 2 31 23 7 16
Mean=Es.d. 5919 314%217 2106 382%+148 284x11.0 83%4.0 9169 9.8+5.3

" Sum of lateralizing motor UPDRS subscales(tremor, rigidity, bradykinesia)
UPDRS=Unified Parkinson’s Disease Rating Scale; H-Y=Hoehn-Yahr stage; ADL=activities of daily living;

NA=data not available

Attenuation  correction was performed using
method( £ =0.11/cm)®, and SPECT

activity (cpm) was converted to absolute units of

Chang’s

radioactivity( # Ci) based upon a calibration factor
determined from a cylindrical phantom of 20 cm
diameter filled with an "I solution.

4. Data Analysis

Three consecutive slices with highest striatal
activities were summed to construct a 10.68 mm
thick slice, shape
region of interest(ROI) (1068 mmx10.68 mm

rectangle) was visually positioned on each stria-

and standardized size and

tum. The same procedures were performed for
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the ROI placement on hypothalamus—midbrain
regions. Three consecutive slices representing the
cerebellum were also added and ROI(14.24 mm x

2492 mm) was cerebellar

placed on each
hemisphere. Right and left cerebellar values were
averaged for subsequent analysis.

['"118-CIT binding in the striatum was esti-
mated using two quantitative indices: 1) the
simplified ratio of specific to nonspecific binding,
or the radioactivity ratio of striatum(an area rich
in DA transporter) to cerebellum [an area con-
taining few or no DA transporterﬁn] minus 1
(specific binding ratio: SBR) and 2) the binding
potential, or the ratio of the rate constant of
binding to the DA transporter(ks) to that of
dissociation from the DA transporter(ks), as
calculated based on a kinetic two-compartment

analysis of radioligand binding.

5. Kinetic Analysis of ['*I1B-CIT Bin-
ding

By using a two-compartment kinetic model, the
rate constants ks and ks were determined in the

striata of healthy subjects and PD patients. Since

2hr

6 br

the number of DA transporter is negligible in the
cerebellum, the assumption was made that the
concentration and kinetics of [IIB-CIT in the
cerebellum is the same as in the free plus
nonspecifically bound space in the striatum®™ ®
Therefore, the time-activity curve of the cerebel-
lum was used as an input function for the two-
compartment model. The concentration of specifi-
cally bound radioligand in the striatum was
determined by subtracting the radioactivity con-
centration in the cerebellum from that in the
striatum. The optimum values of k3 and k4 were
obtained using a nonlinear least square fitting
procedure. The binding of [""IIB-CIT to the DA
transporter in the striatum was evaluated using
the binding potential, defined as kv/ks ratio™.

6. Statistical Analysis

Results are expressed as the mean®ts.d. Com-
parisons of the SPECT measures of [“IIB-CIT
binding between patients and controls were made
with the Mann-Whitney U-test; comparisons be-
tween contralateral and ipsilateral striatum were

performed using the Wilcoxon signed rank test.

12 br

Fig. 1. Brain images obtained with ["®[18-CIT in a healthy subject. The images illustrate
a plane of scanning through the basal ganglia and cerebellum. With increasing
time after injection ["“IIB-CIT concentrates highly in the striatum, an area rich in

dopamine transporter; low activity

is observed in the cerebral cortex and

cerebellar regions, which contain few or no dopamine transporters.
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Fig. 2. Change in the level of activity in different regions of the brain with time
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Fig. 3. Change of the specific binding ratio in the
striatum and hypothalamus with time in a
healthy control and in a patient with Par-
kinson’s disease(PD).

Linear regression analysis by the least squares
method was used to assess the relationship be-
tween the SPECT measures of ["*IIB-CIT binding
and between the SPECT measures and motor
ratings(Hoehn-Yahr stage and UPDRS scores).
Probability values of less than 0.05 were con-

sidered significant.

RESULTS
1. Pharmacokinetics of ['**I18-CIT

With increasing time after injection ["*[IB-CIT
concentrated highly in the striatum, an area rich
in DA transporter, followed by hypothalamus and
midbrain, regions rich in 5-HT transporters(Fig.
1-3). Low activity was observed in the cerebral
cortex and cerebellar regions, which contain few
Fig. 2 and 3 show
representative regional time-activity curves for
the binding of ['*I)B-CIT. The striatal activity in
all healthy subjects increased over time during

or no DA transporters.

the 24 hr scanning period. In the patients with
PD, ['®IIB-CIT accumulated more slowly and the
peak striatal activity was clearly lower than in
the heaithy subjects. In the healthy subjects, the
cerebellar activity reached a peak by 1 hr
postinjection with a rapid washout thereafter; a
similar uptake and washout was shown in the
patients with PD. As a consequence, the striatal
SBR in the healthy subjects increased steadily
over time, while it peaked earlier at 12-24 hr
postinjection and attained lower peak levels in the
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Parkinsonian patients. the caudate(Fig. 4). The results of SPECT
measurement of ["“IIB-CIT binding in the Parkin-

2. Striatal Bindi f ['**118-CIT i .
na Indigg o [~ns-c in PD sonian patients and healthy controls are shown in

In the patients with PD, the binding of ['*I]3B-  Table 2 and Fig. 5. The mean of right and left
CIT in the striatum was markedly reduced; a SBR at 24 hr postinjection and the mean peak
greater reduction occurred in the putamen than in SBR in the striatum were reduced to 48% and

Fig. 4. ['®IIB-CIT SPECT images of a healthy subject and of a
Parkinson's disease (PD) patient. In the patient with PD,
[***11B-CIT binding in the striatum is markedly reduced; a
greater reduction occurred in the putamen than in the
caudate.

Table 2. ['®I18 -CIT SPECT Measures in Parkinson’s Disease Patients and Healthy Controls

Controls PD patients Symptomatic striatumx
24hr SBR' Peak SBR' BP' 24hr SBR' Peak SBRT BP' 24hr SBR' Peak SBRT BP'
Meantsd.  80%07  80%07 79%06  39+13  40x11 37*11 37%12  39%11 36%12

p - - - 0.0001 00001 00005 <00001  <0.0001  0.0002
%
6 of control - - - 48% 50% 47% 46% 48% 46%
mean
Patients with hemiparkinsonism
Contralateral striatum Ipsilateral striatum
24hr SBR Peak SBR BP 24hr SBR Peak SBR BP

Mean+s.d. 34%12 38+10 37%1.1 40+12 44+10 45+08
p 0.0027 0.0039 0.0105 0.0027 0.0039 0.0105
% of trol

ot contro 42% 48% 47% 50% 56% 57%
mean

" Striatum contralateral to symptoms

Mean of right and left striatal values .
SBR=specific binding ratio calculated as the specific(striatal minus cerebellar activity) to cerebellar activity ratio;
BP=binding potential(ks/ks) mcasured using the two-compartment model; p=probability, Parkinson’s disease patients
vs controls, according to the Mann-Whitney U-test
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Fig. 5. Specific binding ratio(A) and binding potential(B) in healthy controls and

Parkinson’s disease (PD) patients.

Left Hemiparkinsonism

Fig. 6. [IZSI]B—CI’I‘ SPECT images of a healthy subject and of a
patient with hemiparkinsonism. In the patient with hemi-
parkinsonism, ["ZIB-CIT binding is-reduced not only in the
striatum contralateral to the clinical symptoms but also. in the
ipsilateral striatum. Note that left is on the right in the figure.

50%, respectively, of the control mean(3.9%+1.3
versus 8.0%£0.7, p=0.0001; 4.0=1.1 versus 80%0.7,
p=0.0001, respectively). The mean binding poten-
tial in the striatum was also reduced to 47% of
the control mean(3.7£1.1 versus 7.9%0.6, p=0.0005).
The SBR at 24 hr postinjection, the peak SBR

and the binding potential in the striatum corres-
ponding to the clinical symptoms were reduced to
46%, 48%, and 46%, respectively, of the control
mean(3.7£1.2 versus 8.0%0.7, p<0.000l; 3.9=*11
versus 8.0£0.7, p<0.0001; 3.6*1.2 versus 7.9£06,
p=0.0002). In the patients with hemiparkinsonism,
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Table 3. Correlation Coefficients for SPECT Measures and Motor Ratings in Parkinson’s Disease

Patients
SBR at 24hr p.i. Peak SBR Binding potential
Disease duration{mo) -0.372 -0.379 ~-0.572
p 0.0510 0.0466 0.0325
Hoehn-Yahr stage -0.508 -0.564 -0.453
p 0.0133 0.0050 0.1042
Total UPDRS -0.557 -0.591 ~0.697
p 0.0058 0.0030 0.0056
Motor UPDRS -0.542 ~-0.568 -0.681
p 0.0075 0.0047 0.0073
ADL score of UPDRS -0.487 -0.543 -0.599
p 0.0183 0.0075 0.0235

Note : Correlations are for means of right and left striatal values. ]
p = probability according to linear regression analysis; SBR = specific binding ratio calgulated as the
specific(striatal minus cerebellar activity) to cerebellar activity ratio; UPDRS = Unified Parkinson’s Disease

Rating Scale; ADL = activities of daily living.

the 24 hr and peak SBR and the binding potential
were reduced not only in the striatum contra-
lateral to the clinical symptoms [42%(3.4%+1.2
versus 8.0+0.7, p=0.0027), 48%(3.8£1.0 versus 8.0
*0.7, p=0.0039), and 47%(3.7%=1.1 versus 7.9%0.6,
p=0.0105), respectively, of the control mean] but
also in the striatum [50%(4.0%+1.2
versus 8.0%0.7, p=0.0027), 56%(4.4£1.0 versus 8.0
+0.7, p=0.0039), and 57%(4.5+£0.8 versus 7.9%0.6,
p=0.0105), respectively, of the control meanl(also
see Fig. 6). In the patients with hemiparkin-

sonism or predominantly unilateral symptoms, the

ipsilateral

reduction was greater on the side opposite to the
predominant symptoms than on the ipsilateral
side(24 hr SBR, 3.6*1.0 versus 4.3%=1.1, p=0.0046;
peak SBR, 39%+0.8 versus 45%*0.9, p=0.0047;
binding potential, 3.5=0.8 versus 44%0.6, p=0.0180).

3. Correlation of SPECT Measures with
Motor Symptoms

Table 3 shows the correlations of SPECT
measures with motor ratings in PD patients. The
mean SBR at 24 hr postinjection, the mean peak
SBR and the mean binding potential in the

striatum were significantly correlated with disease

A 7 0978 .
e p<0.0001 . /
= L ]
& 6 . e
E .. [ ]
£ )
-] O
] e
"g 4
o] °
'é 3
B
L ]
21 2 3 4 5 6
Binding Potential (k3/kd)
B

Specific Binding Ratio at 24 hr p.i.

1 2 3 4 5 6
Binding Potential (k3/k4)

Fig. 7. Correlation of the peak specific binding
ratio (A) and the specific binding ratio at
24 hr postinjection (B) with the binding
potential.

duration, Hoehn-Yahr stage, total score of
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UPDRS, motor score of UPDRS, and activities of
daily living score of UPDRS.

4. Correlation between Simplified Ratio

Index and Kinetic Parameters

There was an excellent correlation between the
peak striatal SBR and the binding potential
(r=0.978, p<0.0001)(Fig. 7). Correlation between
the striatal SBR at 24 hr postinjection and the
binding potential was also shown to be excellent
(r=0.967, p<0.0001).

DISCUSSION

The present study demonstrates that SPECT
measurement of ['ZIIB-CIT binding clearly distin-
guishes patients with PD from healthy subjects.
Between symptomatic patients and healthy sub-
jects, the striatal SBR and binding potential
values were not only significantly different but
also showed a significant interval. The wide gap
in the striatal ['®1I8-CIT binding between symp-
tomatic patients‘ and healthy subjects suggests
that in vivo imaging may be able to identify
patients before the development of definite clinical
symptoms. Indeed, we found that in patients with
hemiparkinsonism, the ["ZIIB-CIT binding reduced
not only in the striatum contralateral to the
clinical symptoms but also in the ipsilateral
striatum. The ability to identify biochemically
patients with PD who have early symptoms or
presymptomatic individuals at risk for PD might
be helpful in light of recent studies suggesting
that early treatment with L-deprenyl, a monoa-
mine-oxidase B inhibitor, slows the progression
of disability in PD®®. Additionally, the mea-
surement of ["*IIB-CIT binding in the striatum
corresponding to the symptomatic or asympto-
matic side may provide information regarding the
threshold for dopaminergic terminal loss at which
symptoms become clinically apparent.

The decrease of [“IB-CIT binding in the
striatum contralateral to the clinical symptoms
(approximately 509) was not as great as the loss
of endogenous DA and DA transporter reported in
samples(>80%)* 6

This may be due to difference in the patient

postmortem human tissue

population: the patients in the present study
(Hoehn-Yahr
severely affected than those from postmortem

stages 1-3) appear much less
examinations. Although it has been proposed that
Parkinsonian symptoms develop only after 85-
90% depletion of endogenous DA levels, this
imaging study suggests that symptoms may
begin with only a 50% decrease in striatal DA
terminal innervation.

We found a clear negative correlation between
["®[IB-CIT binding in the
disability of the patients, assessed by the Hoehn-
Yahr stage and the UPDRS scores. This finding
from [*IB-CIT and SPECT is in accordance
with other SPECT or PET studies using the
same ligand® ™ or [®FIFDOPA™. Also in vitro
studies have indicated a correlation of the degree

striatum and the

of hypokinesia and rigidity of PD patients with
striatal DA deficiencyl) and nigral neuronal loss"
72,73)

The loss of midbrain DA in PD is accompanied

by a rise in the DA D)
17,74)

and D2 receptor
densities . This is found in the putamen and
caudate ﬁssues from unmedicated patients, and
may account for the clinical supersensitivity to
DA agonists in PD patients75’ . However, little is
known about the DA transporter regulation in
residual neruons following DA neuronal loss. The
density of DA transporter on the plasma mem-
brane of dopaminergic terminals is commonly
believed to be so constant that the number of
terminals can be inferred from the DA transporter
density“’ i 78), but there is very little direct
evidence to support this notion. Therefore, it is

not entirely certain whether alterations of the
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number of dopaminergic terminals can be revealed
by measurements of the density of DA trans-
porters in such diseases as Parkinson’s. Although
we found a linear relationship between ["*1}B-CIT
binding and the motor symptoms of the patients,
the patients in the present study were in relati-
vely early stages of the disease. Studies of a
large series of patients with a wide range of
symptom severity may clarify this issue.

While the agonist-induced down-regulation of
postsynaptic DA receptors is established” 75), the
effect of long-term treatment with L-dopa on the
DA transporter density has still to be determined.
In particular, the duration of the L-dopa effect in
taking high doses of
levodopa on a daily basis and undergoing SPECT
imaging with ["®IIB-CIT, should be investigated
further.
L-deprenyl,

Parkinson’s patients

chronic  treatment  with
Wiener et al™.

regulation of the DA transporter in vitro in the

Following
found an up-
mouse brain using [*Hlmazindol, whereas Ursula
et al. failed to find a significant change in in vivo
PHICFT accumulation in the mouse striatum
(unpublished observation). It remains possible that
at least some of the present findings can be
related to the long-term dopaminergic treatment
of the patients.

In the present study, antiparkinsonian medica-
tions were discontinued for 2 days prior to the
scanning. Competetion by endogenous DA has
previously been reported for the binding of the
radioligand ["'Clraclopride to postsynaptic DA D2
receptors, and the consequences of these findings
on the interpretation of PET studies have been
discussed®®?. Since the affinity of B-CIT for DA
transporter is approximately 3 orders of magni-
tude greater than that of DA, it appears unlikely
that the binding of this ligand is influenced by
modest fluctuations in intrasynaptic DA levels.
With large doses of L-dopa(50-200 mg/kg) in

vivo microdialysis studies in normal rat striata

showed DA concentrations to be rising either not
at al® or only 2 to 4 times above baseline

#8570 Infusion of L-dopa(50 mg/kg) failed to
(122

levels
displace striatal TIB-CIT binding in nonhuman
primatesgg), suggesting that the binding would not
be affected by L-dopa

Parkinsonian patients. However,

administration in
it has been
shown that in 6-hydroxydopamine lesioned rats,
striatal
extracellular DA 30-fold, compared with less than

L-dopa infusion(100 mg/kg) increases
2-fold in normal striatum®. This difference has
been attributed to reduced buffering capacity in
denervated striatum as a result of loss of DA
terminals. Supporting this notion, Antonini et al™.
found that several hours of continuous L-dopa
infusion(60-80 mg/hr)
binding in the putamen by 20%-27% but not in

the caudate which is less severely affected than

reduced ["Clraclopride

the putamen in PD. In Parkinson's patients,
therefore, L-dopa therapy may have to be tem-
porarily interrupted to avoid its potential inter-
ference with the binding of ['®IIB-CIT to DA
transporter. In addition, L-deprenyl and its major
metabolite, L—methamphetaminegl), enhance int-
rasynaptic DA levels® ™, However, it is presently
unknown whether acute administration of L-
deprenyl affects ['*IIB-CIT binding.

For ["®IIB-CIT SPECT to be easily applicable
in the clnical setting, relatively simple methods of
guantification will be required. In the present
study, we found an excellent correlation between
the simplified tissue ratio obtained either at peak
striatal binding or 24 hr postinjection and the
binding potential from Kkinetic analysis. This
finding indicates that the simplified ratio index
obtained at 24 hr postinjection may be feasible
for the assessment of [‘PIIB-CIT binding. The
combination of SPECT camera availability with a
simple accurate method that does not require
repeated scanning or complicated modeling pro-

cedures would certainly increase the clinical use
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of ["IB-CIT SPECT in the diagnosis and
treatment of PD.

The diagnosis of PD remains a clinical judg-
ment based primarily upon motor examination and
the patient’s response to L-dopa. A prior study
- correlating clinical impression with = subsequent
pathology showed only 75-80% agreement be-

and pathological diagnoses%).

tween clinical
Moreover, evaluation of disease progréssion based
on clinical examination is complicated by the drug
therapy of motor symptoms. Hence, an objective
marker of DA neuronal loss is essential for the
diagnosis and serial monitoring of the disease and
for improved understanding of the pathophy-
siology of disease onset and progression. The
results of the present study demonstréte marked
differences in ["“IB-CIT SPECT measures be-
tween healthy subjects and PD patients. The
significant correlation of SPECT measures with
motor severity suggests that ['“IIB-CIT may be a
in PD.

Additionally, the simplified tissue ratio obtained at

useful marker of disease severity
24 hr postinjection may be feasible for the
_ assessment of ["ZIIB-CIT binding, avoiding repea-
ted scanning and complicated modeling proce-
dures. ["®IIBCIT SPECT may be clinically useful
for ‘the early diagnosis and serial monitoring of

PD.
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