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Abstract

In this paper we point out that if the classical principal domain for bispectra is utilized to determine a 

second-order Volterra model's output, such an output will be incomplete. This deficiency is associated 

with the periodic nature of the DFT. For this reason, the objective of this paper is to present an "ex 

tended*'  principal domain for Volterra kern이s which leads to an improved estimate of the nonlinear sys

tem's response. In order to define the extended principal domain, we derive a new discrete frequency-do

main Volterra model from a discrete time domain Volterra model utilizing 2-dimensional DFT and the 

relationship between the quadratic component of the Volterra model and a square filter. The effect of the 

extended domain on the model output is interpreted in terms of the periodicity of DFT. Through com 

puter simulations, we demonstrate the effects of the extended principal domain on the Volterra 

modeling. The simulation results indicate that the extended principal domain plays an important role in 

computing Volterra model outputs and estimating Volterra model coefficients.

요 약

본 논문에 서 는 tnspectra늘：- 위 한 고선 직 주엉 역 (classical principal domain) 2계 Volterra 모델의 출력 을 실 

정짓는데 사용되면 그 출력은 완전하지 못하게 될 것임을 지적한다. 이러한 불완전함은 DFT의 주기적 특성과 곤+ 

린이 있다. 이런 이유로, 본 논분의 복적은 비선형 시스템의 응답의 추정을 향상시키는 Volterra 커널을 위한 확 

상된 주영 역 (extended prmcip시 domam)을 제안하는데 있다. 확장된 주영 역을 정 의 내리 기 유] 하여, 2차원 DFT 

와 Volterra 모델의 2계 요소와 정사각형 필터와의 관계를 사용하여 이산 시간 영역 Volterra 모델에서 새로운 이 

사 주파수 영역의 Volterra 모델을 유도하였다 확장된 영역이 모델의 출력에 미치는 영향을 DFT의 주기성 측면 

에서 해석을 하였다. 컴퓨터 모의 실험을 통하여, Volterra 모델링에서 확장된 주영역의 영향을 살펴보았匸]■. 모의 

실험 결과에 의하면, Volterra 모델의 출력을 계산하는 과정고｝ Volterra 모델의 계수를 추정하는데 있어서 매우 

중요한 역 할을 함을 알 수 있었다.

I. Introduction

In recent years, as interest in nonlinear systems, 

particularly in nonlinear digital modeling steadily 

increased, application of Volterra models has played 

an ever increasing role in nonlinear system analy

sis, identification, and prediction, such as com 

munication channel equalization [1], characterization 

of digital magnetic recording channels [2] and 

high-speed A/D converters used in digital radio 

systems [3], and speech prediction [4].

Approaches based on Vol terra models have a firm 

mathematical foundation [51 and can describe a 

broad class of nonlinear phenomena. Furthermore, 

since the output of a Volterra model depends 

linearly on the linear, quadratic, and cubic model 

coefficients (but nonlinearly on the input) [6], many 

concepts originally developed for linear models can 

be extended to Volterra models. Moreover, through 
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llic us(? of Volterra models to model nonlinear 

svstcms. one often gains new insight into the physi 

cal inechanisms underlying such nonlinear systems 

「기一

버ighcrordcr spectra have previously been shown 

to be very powerful in determining frequency

domain Volterra kernels [8] used to model a wide 

variety of nonlinear systems and nonlinear phenom

ena. The principal domains for auto and cross- 

bispectra have been described in the literature [6. 8, 

9]. In this paper we point out that if the classical 

principal domain for bispectra is utilized to deter 

mine a second-order Volterra model's output, such 

an output will be incomplete. This deficiency is 

associated with the periodic nature of the DFT. For 

this reason, the objective of this paper is to present 

an "extended” principal domain for Volterra kernels 

which leads to an improved estimate of the 

nonlinear system's response.

In earlier literature [6, 81, the discrete frequency

domain second-order Volterra kernel has been con 

sidered in the principal domain AOPCQR in Figure 

1. However, when dealing with discrete time and fre

quency-domain Volterra models, we often observe a 

discrepancy between the time and frequency-domain

Fig 1. The area MPCQR is the principal domain and the 
shaded areas RQD and OBP represent the extended 
principal domain for a second-order Volterra model. 
Y2(/) denotes the output of the second-order 
component of the Volterra model. The index set 
{ 0, 1....M- 1 } is translated to a discrete frequency
set {—扁性......./m/2 } by the M-periodicity of the
DFT and sampling frequency.

Volterra model outputs. Our study presented in the 

following sections shows that the freq니ency domain 

second order Volterra kernel defined in the shaded 

regions RQD and OBP in Figure 1 also contributes 

to the quadratic output of the Volterra model and, 

therefore, should be in이udcd. For this reason we 

define an extended principal domain for the 

second-order Volterra kem이 consisting of AOPCQR. 

RQD, and OBP.

In the following section, we present discrete 

time and frequency-domain second-order Volterra 

models, in which the discrete frequency-domain sec 

ond-order Volterra model is different from those in 

earlier literature [6, 8]. In Section 3, we present 

the derivation and explanation of the extended prin 

cipal domain. In Section 4, for a numerical example, 

we demonstrate the effects of the classical and 

extended principal domains on computing Volterra 

model outputs and estimating Volterra model 

coefficients.

II. Vol terra Mod 이 s

If we assume that the nonlinear system to be 

represented by a Volterra model is stable and of 

finite memory and has nonlinearities up to second 

order, the second-order Volterra model can approxi

mate the output of the nonlinear system by its 

sampled data fbrm [10]. The model output can be 

represented as follows;

N-l N-\ N~}
3仞)=£ hidjxtn-i} +12 E h2(i, ⑴

1 = 0 I-0 / = 0

y^diere r(n) and y(n) denote the input sequence to 

the system and the system output sequence 

predicted by the second-order Volterra model, 

respectively, and h成・i, j} represent the linear 

and quadratic Volterra model coefficients, respect

ively.

Since the Volterra model can be interpreted as a 

generalized Taylor series representation of a func

tion with memory, the Volterra model can be 

interpreted as an extension of a linear model in that 

a quadratic model, a cubic model, and so on are 

appended in parallel to a linear model. For this 

reason, the Volterra models can describe a broad 

class of gently nonlinear systems. For practical 

reasons, primarily, this paper deals with a second- 
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order model but the same procedure can be 

extended, in principal, to higher orders.

In earlier literature [6, 8], the discrete frequency 

domain version of (1) is considered as follows:

M- I M- 1

+ E E q}X(p)X[q)d(m~~ p~q) (2)
/)= 0 q = 0 

where

=
1，U = O

0, 〃 M； 0

(3)

In (2), y(w), X〔m), Hi伽)，and H2(p, q) are DFT s of y 

0z), r(w), Ai(?) abd h2[i, j] respectively. The delta 

function is a representation of the "frequency selec 

tion rule” [8], which determines discrete frequency 

component pairs Ip, q] satisfying m= p- q. The last 

term of (2) is called the quadratic component of the 

Volterra model output. This term sums the 

contributions of all pairs of quadratically interacting 

spectral components that satisfy the selection rule 

m = p * q.

In this paper, however, we introduce a new sec- 

ond order Volterra model based on an M point DFT: 

y(湖(沏*浏

M- 1 M~ 1
+ £ E H2(A q)X[p}Xtq)6M(m-p-q) (4)

0 <7 = 0

wdiere

I 1, (>/ mod ulo M) = 0 ⑸
허“"" 1 0, 3 mod ulo M) ¥ 0

In (4) Y(m), H] (m)f and H2(p, q) are DFT s of y 

0z), hx(i} and h2(i. /), respectively. Note that the 

frequency-domain Volterra model (4) is different 

from ⑵ in that(5M(J is defined by the modulo func

tion [11]. This is explained further in the next sec 

tion.

ID. Extended Principal Domain

In this section, we investigate how the one

dimensional output of the Volterra model is relate 

to the two-dimens io nal frequency components 

generated by the product of the one-dimensional 

input sequence. This reveals that in the discrete fre 

quency domain, the Volterra kernel defined oiitside 

the classical principal domain also contributes to 

the quadratic o나tput of the model.

Hor ibis investigation, first, we need to look into 

the relationsiiip between a quadrati< tnociel outptir 

of the second order Volterra model (1) and a two- 

dimensional square filter output, when the two 

dimensional filter coefficients are equal to the quad

ratic kernel h2(i, /). The two-dimensional square fil

ter output q(l, m) is represented by the following 

two-dimensional convolution.

IV- 1 ?v- 1

qV、沥)二£ E m-j} (6)
2 = () J = 0

where x2(-,-) represents a two-dimensional input 

sequence. According to (1), the quadratic model out

put y2M is given by

N- 1N-1 

財，?)=£： E - j}x{n-i}x{n- j} (7)
，=0;=0

Let us assume that the two-dimensional input 

sequence x2(i, j) in (6) is equal to which

implies that j) is separable [12]. Then. (6) 

becomes

N-lN-1

q(l, m) E (8)
;-0 7-0

By comparing (7) and (8), we arrive at the following 

expression,

丿M处)=/(丸，刀) (9)

That is, the output of the quadratic component of 

the Volterra model corresponds to the values on the 

diagonal of the two-dimensional filter outputs. Based 

on this observation and the separability of x2(z,顶), 

we consider the process of computing q(l, m) using 

나le two dimensional IDFT of H2(p, q)X(p)X〔q)，

m-im—i
q(l. m)=E E q) (10)

p=0 (/=()

udiere WM = e27ly/ In the Volterra model, the out 

put is one dimensional, thus we are interested in 

only the diagonal terms q(死，n\ rather than all the 

two-dimensional outputs. For l = n and n, (10) 

becomes

M-IM-1

q(n, m)=L E 払0 g)X(Z»X0)1祐"顷" (ID
/> = () g = 0
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[外’sulistitiiting •丄 p * g in (II) arid utilizing = 

</(//. 〃)，(11) Incomes

'2M 2
「"〃)一 £：W宀 T H2(A q}X(p}X{qVl (12)

> 0 I/1,(/) f Q(7)

where D(이 = ；(力, q) 丨力+ q = x, p, q = O, 1，…,M- 1 ；. Be 

cause of the periodicity of WM, that is, ' '개" = \卩當 

we can rewrite (12) as follows :

M- 1
旦奶)=£ WS ； E H2(p, q)X(p)X(q)

7-0 e </)

十 L H2(A q)Xlp)X(q)} (13)
!/>, =7)GUI7)

where

Di(a) = (0 0)I 力+ 0 = a,刀.q = 0, - 1} (14)

and

D2(a) = {(p, q}\ p + p,q = Q, 1} (15)

(13) shows that the quadratic output in the time 

domain is a one-dimensional DFT of the summation 

of the product of the input frequency components 

weighted by the Volterra model coefficients.

Let us define the frequency-domain quadratic out 

put Y2(m) from (13) as follows:

Y2M = L H2(p, q]X(p)X(q)
ip. q) ED"

+ E H2(A <7)X(/>)X(<7) (16)
ED、g) eDj(wl

We use the delta function defined in (5) to simplify 

(16) as follows:

M-1M-1
丫2(沏=工 E q) X(p) X((j) 3M(m~ p — q) (17)

力=o Q=0

Utilizing (17), we have the discrete frequency-domain 

second-order Volterra model (4) associated with an 

M-point DFT.

We need to carefully consider the meaning of the 

last term in (16). This term has not been previously 

considered under the assumptions that the quad

ratic transfer function is confined within the princi

pal domains [6, 8] and/or that the input X[p) is 

banddimited. For the purpose of a clear explanation, 

assume that M is an even number and let us con 

sider the quadratic case where the quadratic trans

fer function H2(p, q) has nonzero values over the

region 疗0. In Figure 1, the index set 50. 1:

is translated to a discrete frequency set ■； — '•…

0，…,/M/2 i- by the M-periodicity of the DFT and sam 

pling frequency. The shaded areas RQD and OBP in 

Figure 1 represent the region D2(m). When the input 

frequency components are not zero in these areas, 

the last term in (16) has a nonzero value. As shown 

in Figure 2, for the positive output frequency 

components, due to the M-periodicity of the DFT, the 

area OBP gets reflected into the principal domain 

MiPCQR as the area denoted by OBP. This 

phenomenon, where in effect the last term in (16) 

takes on the identity of frequency components in 

the classical principal domain, is similar to the 

aliasing effects in the linear filtering. In order to 

accurately compute the Volterra model output, these 

terms located outside the classical principal domains 

should be taken into account.

Fig 2. Effects of Periodicity of DFT： For the positive output 
frequency components, due to the M-periodicity of 
the DFT, the area OBP gets reflected into the princi
pal domain MPCQR as the area O B P .

IV. Computer Simulation

In this section, through computer simulations, we 

investigate the validity of the extended principal 

domain in terms of computing Volterra model 

outputs and estimating Volterra model coefficients. 

In the case of computing Volterra model outputs, for 

a known time-domain Volterra system, frequency

domain Volterra model outputs are computed over 
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the extended and classical principal domains, 

respectively. They are inverse transformed into the 

time domain, and. then compared to the system 

outputs generated from (he known lime-domaiii 

Volterra system.

Next, we consider the identification of discrete fre

quency-domain second order Volterra models asso 

ciated with the extended principal domain. For a 

known Volterra system, we apply the identification 

methods with the classical and extended principal 

domains and compare the coefficient estimates to 

the known true coefficients.

For the two cases mentioned in the previous 

paragraphs, we choose the following second-order 

Volteira system [6]

y(n\ = ~0.64t(m) + x(n-2] 4- 0.9x2(n)十 r2(w— 1) (18)

wdiere the first two terms represent the linear 

response and the remaining terms denote the quad

ratic response of the system. The transfer functions 

are given by

HiM- —0.64 (19)

Hi(p, <7)= 0.9 +e冲{一丿2기/)+ q)} (20)

The linear transfer function Is shown in Figure 

3 and Figures 4 and 5 show the three-dimensional 

plots and the contour plots of the magnitude and 

phase of the quadratic transfer function H2(p. 

respectively. As indicated in Figure 4 (b), the quad

ratic transfer function H2(p, q) has nonzero values 

in 나】。region denoted by RQD and OBP. For 나】is 

reason, the Volterra system (18) is adequate to illus-

0.6

•p
n

 흐
d
s

■O-4 -0.3 -0J -0.1 0 0.1 Q2 0_3 0.4 0.5
Ncrmaltzed Frequency

(a)

■0.5 -04 -03 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency

(b)

Fig 3. Linear Transfer Function of (19) ： (a) Amplitude, (b) 
Phase.

-0.3

-0.4

-0.5
-04 0

Nonnalzed Frequency

(b)

Fig 4. Amplitude of the Quadratic Transfer Function of 
(2이: (a)Three-Dimensional Plot, (b) Contour Plot. 
Note that 나】。level step size is 0.25.
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Fig 5. Phase of 나Quadratic Transfer Function of (20): 
(a) Three-Dimensional Plot, (b) Contour Plot. The 
unit is radian. Note that the level step size is 0.1.

trate the effects of the terms outside the classical 

principal domain on the Volterra model output.

VI .A Computing Volterra Model Outputs

In order to demonstrate the effects of the extended 

and classical principal domains on computing Volterra 

model outputs, the input sequence x(i) to the 

Volterra system (18) is generated using MATLAB 

RANDN and plotted in Figure 6. The length of the 

sequence is 64. Figure 7 displays the power spectrum 

of the input sequence r(z). As mentioned in the pre 

vious section, the frequency components of the in

put sequence associated with the regions RQD and 

OBP have nonzero values. Figure 8 shows the 

Volterra model output sequence yM,讪ich is 

computed using the time-domain Volterra model 

(18).

Fig 6. Volterra System Input x{n\ in (18).

Fig 7 Power Spectrum of Volterra System Input x(n) in 
(18).

Fig 8- Volterra System Output v(/) in (18).

In order to compute the Volterra model output in 

the frequency domain, the input sequence is 

sectioned into 4 segments of 32 samples each 떠th 

50% overlap. The reason for overlapping each sec
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tion is to avoid the effect of circular convolution 

112]. Each segment is transformed \da FFT. First, for 

each input section, we compute the frequency domain 

。니IpuL section using (2), which is based on the 

(lassicai principal domain. Hirn, the frequency domain 

output section is inverse transformed to obtain the 

time-domain one. For each time-domain output sec 

tion, we collect the last correct 16 samples that cor 

respond to linear convolution results. Those samples 

are connected to generate the time-domain Volterra 

model outputs, wdilch are plotted in Figure 9. Second, 

in order to compute the Volterra model outputs 

using (4), we ap미y the same procedure as mentioned 

previously. Figure 10 아]ows that result. Figure 11 

(a) displays the absolute values of error sequence 

between the output sequence using the classical 

principal domain and the true output sequence 

plotted in Figure 8, while Figure 11 (b) shows 나ic 

absolute values of error sequence between the out

put sequence using the extended principal domain 

and the true output sequence, where we note the error 

is of the order of 10-15. In addition, the normalized 

mean square error (NMSE) for Figure 11 (a) is 0. 

03591, while the NMSE for Figure 11 (b) is 8.131 x 

1(厂32 This virtually perfect match with the true 

output sequence demonstrates the validity of the 

extended principal domain.

Fig 10, Model Output Computed Based on 나冶 Extended 
Principal Domain.

(a)

Fig 9. Model Output Computed Based on the Classical 
Principal Domain,

Fig 11. (a) Absolute Value of Error between System Out
put y(n) and Output Based on the Classical Princi
pal Domain, (b) Absolute Value of Error between 
System Output y(n) and Output Based on the 
Extended Principal Domain. Note the scale change 
in (b).
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、'、.8 Identification of Volterra Models

l；i diis subsection, we examine the validity of the 

principal domain in conjunction with the 

:iori of second-order discrete frequency 

■iHMin Volterra models. The identification method 

.：ij! \\?e utilize in this experiment is the frequency 

,/jjinain Volterra model identification method 

presented in [6, 8]. However, for identifying the 

quadratic transfer function, the method rests on the 

extended principal domain proposed in this paper, 

which we will call the extended domain method. 

Furthermore, for the purpose of comparison, the 

same method with the classical principal domain. 

which will be called the classical domain method. 

is also applied. Then, we compare the coefficient 

estimates by the two methods to the known true 

coefficients. In the following, we briefly describe the 

classical and extended domain methods.

Classical Domain Method：(2) can be rewritten in a 

vector form

y伽)(湖 x(湖 (2i)

where

H(彻)=[HJm) H2(Pi，臨....也(& Qj.J (22)

and

Xlm) = IX(m) X0) X 妬)...X(爲)X(g").. J T (23)

with 力z + 务=m In (23), the superscript T represents 

the transpose of a vector. Multiplying both sides of 

(21) by X*( 湖 and taking expected values of both 

sides, we arrive at

E{Y(m) } - HME(XM X*(m)}  (24)

where the superscript * denotes the complex conju 

gate and transpose of a vector. If E{XM X*(m)}  is 

nonsingular, the transfer function vector is 

given by

HM=E{YM X*( 湖}[E{X(湖 X*( 湖}L (25)

5아lere the superscript 1 represents the inverse of a 

matrix.

Extended Domain Method：The extended domain 

method utilizes the same approach as in the classical 

domain method. The difference between the classical 

and extended domain methods lies in constructing 

X(?鶴)and H(m). In the extended domain method. X 

(m) and consist of the components satisfying P), 

+ qH~m or pn + = M + m. For this reason, the

sizes of XM and 77(m) are larger than those of X 

(崩 and H(m) of the classical domain method.

The time-domain Volterra system (18) is employed 

to generate input and output data records to be 

utilized in this experiment. We apply a zero mean 

white Gaussian sequence of unit variance, which is 

generated using MATLAB RANDN, to the second-order 

Volterra system (18). Since the focus of this simu 

lation lies on demonstrating the effect of the 

extended principal domain on the frequency-domain 

Volterra model identification, we do not consider 

additive noise in the input-output data records. 

These noise-free data records consist of 32 X 500 
sample points and are divided up into 500 segments 

of 32 data points each. Each segment is DFTed via 

the EFT algorithm to calculate various second-, 

third-, and fourth order sample spectra, which are 

then ensemble averaged to obtain the spectral 

moment estimates.

To quantify the quality of the estimated frequency

domain linear and quadratic transfer functions, the 

normalized mean square errors are defined as follows;

1 
MSEL=—— 

M 上o r瓦㈣I *一 (26)

(27)
1 d

MSEQ =——£
Nq (p, q)^S

仔&0 4)-田0

I函"而厂一

where the hat denotes an estimated quantity. For 

the extended domain method, S represents the 

extended principal domain and N(J is 1024, while for 

the 시assical domain method, S denotes the classical 

principal domain and Nq is 768. M signifies the 

number of points in the FFT used in the experiment.

Figures 12 and 13 show the amplitudes and 

phases of the linear and quadratic transfer functions 

estimated by the extended domain method, respect

ively. Figures 14 and 15 show the amplitudes and 

phases of the linear and quadratic transfer functions 

estimated by the classical domain method, respect

ively. Table 1 summarizes the estimation results by 

the two methods in terms of the mean squared error 

defined in (26) and (27). The virtually perfect match 
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demonstrates the validity of the extended principal 

domain, vs the classical principal domain in the 

identification problem.

e

 으
-
-
으

0.4

(b)

Fig 13. Estimated Quadratic Transfer Function by the 
Extended Domain Method: (a) Amplitude, (b) Phase.

-8.S 9.4 -0.3 -0.2 -0.1 0 0.1 Q2. 。쇼 0.4 0.5
Normalized Frequency

—p 뜨
 
富론

-4 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Normalized Frequency

Fig 12. Estimated Linear

(b)

Transfer Function by the
Extended Domain Method: (a) Arm 이 itude, (b)
Phase.

(a)

【
잖
-
es"c

d

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 Q2 0.3 0.4 0.5
Normalized Frequency

(b)

Fig 14. Estimated Linear Transfer Function by the Classi
cal Domain Method: (a) Amplitude, (b) Phase.
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(b)

Fig 드 Estimated Quadratic Transfer FYinction by the 
Classical Domain Method: (a) Amplitude, (b) Phase.

Table 1. Normalized Mean Square Errors of Linear and 
Quadratic Transfer Functions Estimated by 
Extended and Classical Domain Methods

-Method MSEL MSEQ

Extended 1.5177e-031 2.6939e-031

Classical 9.3907e-004 9.8182e-003

V. Conclusion

In 나Ms paper, we presented the extended principal 

domain for Volterra kernels which leads to an 

improved estimate of 나此 Volterra system's response. 

Using computer simulation, we investigated the val

idity of the extended principal domain by comparing 

Volterra model outputs based on the classical and 

extended principal domains. In addition, the im

provement achieved by employing the extended 

principal domain fbr estimating Volterra transfer 

function was demonstrated using computer simu

lation. Especially, the extended domain identifi

cation method was demonstrated to be much better 

than the classical domain identification method. In 

this paper, our discussion on the extended principal 

domain is limited to the quadratic case. In principal, 

however, the same procedure can be extended to 

higher orders.
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