The Effect of the Basic Fibroblast Growth Factor on Proliferation Rate of the Human Periodontal Ligament Cells and Human Gingival Fibroblasts

치주인대세포 및 치은섬유아세포의 DNA 합성능에 대한 b-Fibroblast growth factor의 영향

  • Cho, Young-Joon (Department of Periodontology, College of Dentistry, Kyungpook National University) ;
  • Lee, Jae-Mok (Department of Periodontology, College of Dentistry, Kyungpook National University) ;
  • Suh, Jo-Young (Department of Periodontology, College of Dentistry, Kyungpook National University)
  • 조영준 (경북대학교 치과대학 치주과학교실) ;
  • 이재목 (경북대학교 치과대학 치주과학교실) ;
  • 서조영 (경북대학교 치과대학 치주과학교실)
  • Published : 1996.06.30

Abstract

The use of basic fibroblast growth factor which function as potent biologic mediators regulating numerous activities of wound healing has been suggested for the promotion of periodontal regeneration. The mitogenic effects of basic fibroblast growth factor on human periodontal ligament cells and human gingival fibroblasts were evaluated by determining the incorporation of 5-Bromo-2'deoxy-uridine into DNA of the cells in a dose -dependent manner. The cells which were prepared were the primary cultured gingival fibroblasts and periodontal ligament cells from human the fourth or sixth subpassages were used in the experiments. The cells which were seeded DMEM contain 10% FBS. The added concentrations of basic fibroblast growth factor were 0.1, 1, 10, 50, $l00{\eta}g/ml$ and basic fibroblast growth factor were added to the quiescent cells for 24 hours, 48 hours and 72 hours. They were labeled with $10{\mu}l/200{\mu}l$ 5Bromo-2'-deoxy-uridine for the last 6 hours of each culture. The results of the five determinants were presented as mean and S.D.. The results were as follows. : The DNA synthetic activity of human gingival fibroblasts was increased dose dependently by basic fibroblast growth factor at 24 hours, 48 hours and 72 hours. The similar mitogenic effects were at the 24 and 48 hours of basic fibroblast growth factor, but the DNA synthetic activity of human gingival fibroblasts generally decreased at 72 hours. The DNA synthetic activity of human periodontal ligament cells was increased dose dependently to $50{\eta}g/ml$ by basic fibroblast growth factor at 24, 48 and 72 hours, but the DNA synthetic activity decreased at $l00{\eta}g/ml$ of each hour. Generally the maximum mitogenic effects were at the 48 hours application of basic fibroblast growth factor. The DNA synthetic activity of human periodontal ligament cells generally decreased lower at 72 hours than at 24, 48 hours the application of basic fibroblast growth factor. In the comparison of DNA synthetic activity between human gingival fibroblasts and human periodontal ligament cells, human periodontal ligament cells had slightly higher proliferation activity than human gingival fibroblasts for a longer time at the high dosage of the basic fibroblast growth factor.In conclusion, basic fibroblast growth factor have important roles in the stimulation of DNA synthesis in human periodontal ligament cells and human gingival fibroblasts, and thus may be useful for clinical applications in periodontal regenerative procedures.

Keywords