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Neural Networks and Logistic Models for

Classification: A Case Study'
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Abstract In this paper, we study and compare two types of methods for classi-
fication when both continuous and categorical variables are used to describe each
individual. One is neural network(NN) method using backpropagation learning
(BPL). The other is logistic model(LM) method. Both the NN and LM are based on
projections of the data in directions determined from interconnection weights.
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1. Introduction

Neural networks(hereafter abbreviated NNs) have been vigorously promoted in
the computer science literature for tackling a wide variety of scientific problems.
Recently, investigations have started to see how useful NNs are for tackling
statistical questions in general(Ripley, 1994, 1996; Cheng and Titterington,1994),
and for regression modeling in particular(Hwang et.al.,1994). Despite some
impressive claims, the empirical results using NN models have been rather mixed.
It is pertinent to ask whether the success of NN modelling depends on (a) the type
of data, (b) the skill of the analyst in selecting a suitable NN model and/or (c) the
numerical methods used to fit the model. This paper describes a case study which
aims to do just that.

Discriminant function analysis has often been used in the past instead of logistic
analysis when the researchers' aim was prediction, not discrimination. But even
when discrimination is the actual aim, if the explanatory variables do not follow a
multivariate normal distribution, the use of standard discriminant function
estimations will not be statistically consistent. The logistic regression approach is
useful for the quite wide family of distribution.
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In this paper, we study and compare the classification problem by the NN and
the LM when both continuous and categorical variables are used to describe each
individual. It is because the data are often given in this way in the real application
problems. In statistics, logistic model has been mainly used for the case when
continuous and categorical variables are mixed. Methods of logistic model are
learning algorithms for two layer network using sigmoidal (logistic) activation
function. This model is very widely used for analyzing multivariate data involving
binary responses. The multilayer NN is an immediate extension of this simple,
two layer network. Therefore, it is meaningful to compare these two methods for
such data.

2. Logistic Models for Classification

The essential feature of this approach is to assume the following form for the
probabilities of class membership(we shall assume we have two groups, C, and C,):

P(C1x) = exp(w, + ZWixi) /1 +exp(w, + 2 w;x,)]
i=1

i=1
P(Cylx)=1/[1+exp(w, + > w;x,)]
i=1

The parameters, w,,w,,---,w, may be estimated by maximum likelihood. See
McLachlan(1992) for details. The important point is that the estimation process is
independent of the form assumed for the class density functions. It has been
shown that the method of classification has optimal properties under a wide range
of assumptions about the underlying distributions including those relevant when
both continuous and categorical variables are used to describe each individual.

After estimation of the parameters, allocation of new individuals can be
performed on the basis of scores given by

n
W, +Zw,.xi-
i=1

“If this is positive the individual is allocated to C, (since P(C,)> P(C,)), if
negative to C, (assuming equal prior probabilities for the two groups).

3. Neural Networks

The following brief account of NNs, and how to fit them,.is intended to make
this paper as self-contained as possible. However the reader may find it helpful to
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read Ripley(1996). This paper restricts attention to one (popular) form of NN
called the feedforward NN, which use BPL. The feedforward NN estimates an
unknown function from representative observations of the relevant variables.
These NNs have been proposed for essentially two distinct problem types, namely
nonparametric regression and noparametric classification. In this paper, we shall
concentrate on classification modeling applications of these NNs. In any case, we
are given a training set, consisting of pairs of input (feature) vectors and
associated outputs, say, T={{X;,Y p);p=l,"-,P}. From these data, it is desired to
construct a map which generalizes well, that is, given a new value of x, the map
will provide a reasonable prediction for the unobserved output associated with this
__)£ .

In nonparametric regression, y may be (any) real number or a vector of s real
numbers. In classification, y is usually represented as an m-dimensional vector of
zero and ones, with a single 1 in the kth position if the example came from
category k. In some classification applications, the desired algorithm will, given
x, return a vector of zeros and ones indicating category assignment ("hard"
classification). In other applications, it may be desired to return an m-vector of
probabilities (that is, non-negative numbers summing to 1) which represent a
forecast of the probabilities of an object with predictor vector ¢ being in each of
the m categories ("soft” classification). In some problems the feature vector x of
dimension n contains zeros and ones (as in a bitmap of handwriting). In some
other problems, it may contain real numbers representing physical quantities. And
in the other problems, it may contain continuous numbers and categorical
numbers. In this paper we will be generally concerned with the last case. We
notice that classification is a special case of function approximation in which an
unknown function takes values on a finite set of class labels.

Feedforward NNs provide a flexible way to generalize linear regression
functions. We start with the simplest but most common form with one hidden
layer as shown in Figure 1. The input units just provide a "fan-out" and distribute
the inputs to the "hidden" units in the second layer. These units sum their inputs,
add a constant (the "bias") and take a fixed function g, of the result. The output
units are of the same form, but with output function g . Thus

Vi = go{ak +zwjkgh(aj +2Wijxi )}’
j i

where g, is the activation function of the hidden layer and g, is the activation
function for the output, g, is generally a sigmoidal function, for example,
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Figure 1 A generic feedforward network with a single hidden layer

g,(H)=1/(1+¢™"), while g, may be linear, sigmoidal, or a threshold unit. In fact,
g, and g, are basis functions. In the learning problem we have described, best
results would likely be obtained with g, linear. We can eliminate the biases ¢, by
introducing an input unit which is always at +1 and feeds every other unit. This is
the same idea as adding a constant column to the design matrix to include the
intercept in regression. The set of weights W are learner from the training data by
BPL. The BPL algorithm iteratively adjusts the network weights to minimize the
least squares objective function (the sum of squared residuals)

P m
E(W,T)= Zz(ypi —ﬁpj)z
p=l j=1
where Yo is the jth component of training output vector y = f(x,), and Yo is
the estimated output at the jth output node obtained by forward propagating the
training input X, through the network using the recursive equations, i.e.,
Y, STEw). Clearly, this objective function depends upon the network weights
W and the training set T. There are two common types of BPL: the batch one and
the sequential one. The batch BPL updates the weights after the presentation of the
complete set of training data. On the other hand, the sequential BPL adjusts the
network parameters as training patterns are presented, rather than after a complete
pass through the training set. We use the sequential approach for this study.
Such networks have a considerable history, including an original biological
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motivation, which is explained in Hertz et al.(1991). However, they can equally be
seen as a way to parameterize a fairly general non-linear function. Such networks
are rather general: Cybenko(1989), Funahashi(1989), Hornik et al.(1989) and later
researchers have shown the following important result.

Theorem 1 Neural networks with linear output unit and hidden layer can
approximate any continuous (Borel measurable) function f(x) uniformly on
compact sets, by increasing the size of the hidden layer.

Jones(1992) shows that (for sufficiently smooth f) the L -approximation is
O(1/+/N), where N is the number of hidden units.

Due to the curse of dimensionality, locally supported basis function may not be
sufficient and effective for function estimation in high dimensional spaces where
the data are very sparse. Linear superposition of basis functions of local support
will fail to pick up small structural features when used to interpolate or estimate in
high dimensional spaces(n>2), unless the data size is gigantic. Estimation
methods of B-spline polynomials, kernel based approximation, and sampling
theorems all use locally supported basis function, with major mass concentrating
on a finite support. This feature restricts the suitability of these methods for
multivarate function estimation. That is, the shapes of basis function used in B-
spline, kernel based method, and sampling theorems are inflexible and relatively
simple. They are constructed from either the tensor products of univariate function
or univariate kernel functions, which may not be rich and flexible enough to
describe the complex structures of the underlying function in multidimensional
spaces.

Ridge like basis functions have global support - they take nonzero value on an
infinite region. These basis function may not serve the estimation process well
when the function being estimated has many small features defined on complex
regions in the domain of the function. Therefore, it is desirable, from the
viewpoint of function estimation, to have basis functions of local support or other
kinds as well. It is known that a larger class of basis functions can be constructed
by using more hidden layers. Chen(1991) has investigated the representational
power of multilayer feedforward NN both analytically and constructively. We
generally need a network with five hidden layers to implement a representation
that is.a linear combination of basis functions, which are mixtures of locally
supported and nonlocally supported basis function. The requirement of five hidden
layers is not necessary in theory, since a product of any finite termncan be
implemented with one hidden layer. Therefore, only three hidden layers are
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required for the representation. However, its construction is obscured from
intuitive interpretation. We state one important theorem on a network with three
hidden layers. This result is first obtained by Hornik, Stinchcombe and
White(1989).

Theorem 2 Let f(x) be a real valued Borel measurable function. There exists a
sequence of networks of three hidden layers using sigmoidal functions as the
activation functions for the first hidden layer nodes and the second and third
hidden layer for implementing multiplication, such that the sequence of functions
represented by the networks converges to £ (x) almost everywhere.

4. Numerical Ilustration

The example used for this case study examines 1970 Census data for the 50
states in America. This data set is given in Fienberg(1981). We use the percent
change in population from the 1960 Census to the 1970 Census for each state
(coded O or 1, according to whether the change was below or above the median
change for all states) as the binary "grouping” or dependent variable. The median
is chosen to divide the two groups so that the prior probabilities are 0.5 for each
group. The explanatory variables are per capita income (in $1000), birth rate
(percent), death rate (percent), urbanization of population (0 or 1 as population is
less than or greater than 70 percent urban), and absence or presence of coastline (0
or 1). Thus there are three continuous explanatory variables and two binary
explanatory variables.

In order to use a form of cross-validation for this study, we randomly divided the
50 states into five groups of 10 states each, as in Fienberg(1981). NN approach,
logistic regression and linear discriminant function analysis were performed on 40
states at a time, and then the fitted functions were used to predict the outcome for
the remaining 10 states.

For this study we use the network consisting of three hidden layers with 21,14,
and 7 nodes, respectively. The singmoidal function g,()=1/(1+e™") is used as
the activation function for each hidden node. No activation functions (or identity
functions) are used for the output nodes. Here, how to decide the number of nodes
is beyond of this study.

When three methods were applied to the excluded data, 34 of the states were
correctly classified by linear discriminant analysis, 36 by the logistic model, and
37 by the NN with three hidden layers. Thus, we notice from this example that the
NN with three hidden layers works better than logistic regression model which is a
NN with no hidden layers. Twelve states were simultaneously misclassified by
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both the linear discrimimant analysis and logistic model. Only six states were
simultaneously misclassified by both logistic model and NN. Therefore, we notice
that logistic model gives numerical results more similar to those from the linear
discriminant anaiysis, rather than those from NN, even if logistic model is a
special case of NN. Furthermore, only five states were simultaneously
misclassified by three methods.
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