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Conditional Confidence Interval for Parameters
in Accelerated Life Testing
Byung-Gu Park - Sang-Chul Yoonl

Abstract In this paper, estimation and prediction procedures are discussed for
general situation in which the failure time follows the independent density fi(g,) for
the accelerated life testing under Type I censoring. In the context of accelerated life
test experiment, procedures are given for estimating the parameters in the Eyring
model, and for estimating mean life at a given future stress level. The procedures
given are conditional confidence interval procedures, obtained by conditioning on
ancillary statistics. A comparison is made of these procedures and procedures based
on asymptotic properties of the maximum likelihood estimates.

keywords: Accelerated Life Testing, Conditional Confidence Intervals, Ancillary
Statistics, Exponential Regression, Eyring model.

1. Introduction

In studies concerning the length of life of certain types of manufactured items, it
is often wished to consider the relationship between length of the life and one or
more concomitant (or stress) variables. For a example, in an experiment to study
the lifetimes of a certain type of electrical insulation, the relationship between
length of life and temperature was studied (see; Escobar and Meeter (1993), and
Nelson (1990)).

The estimated relationship between length of life and stress variables allows the
prediction of item life under use conditions. This situation commonly arises in
accelerated life testing (ALT) where, on the basis of tests run at accelerated test
conditions, it is desired to predict item life under use conditions. For parametric
approaches to this problem McCool(1980) and Meeker and Hahn (1985) obtained
the distribution of pivotal quantities to derive exact confidence intervals for
parameters, percentiles, reliabilities, or other quantities of interest. Lawless (1976)
also considered the exponential-inverse power rule model and use condition on

1 Department of Statistics, Kyungpook National University, Taegu, 702-701, Korea



22 Byung-Gu Park * Sang-Chul Yoon

ancillary statistics to yield interval estimates for parameters based on complete and
single Type Il censoring. Thomas (1964) showed applications of the Eyring model
in studying the aging process of electronic parts when the stress is temperature.
Most of researchers have investigated mainly for parameter estimation and
optimal design problems. The calculation of linear estimates is generally much
less laborious than the calculation of maximum likelihood estimates, and
confidence intervals based on linear estimates have not been developed for the
exponential regression models.

In this paper, we will find more general form pertaining to conditional
confidence intervals estimation in the regression model having also been
presented for parameters. Using this result, we study the maximum likelihood
estimation for parameters of ALT models under Type II censoring, assuming that
the log-lifetime is a linear function of the stresses.

In Section 2, we show that the conditional p.d.f. of pivotal quantity given the
ancillary statistic is the same of the form the joint p.d.f. pivotal quantity and the
ancillary statistic. In Section 3, Using pivotal quantities, we derive conditional
confidence intervals for the Eyring model. In Section 4, we consider the
performance of the conditional confidence interval and approximate confidence
interval for the use condition, g,, of the Eyring model in comparing p.d.f.'s
through the Monte Carlo simulation.

2. Conditional Confidence Interval Procedures

We discuss estimation and prediction procedures for a model including the
Eyring model which is commonly used in reliability and life testing work. We
consider the Eyring model in the following form: Let the lifetime of an item under
environmental condition i have an exponential distribution with mean g,. In this
model the environmental conditions are specified by means of a single stress x;,
and the relationship

6, =x, exp(B,+B,x,) M

is assumed, where yx; is temperature, f3, and B, are unknown parameters, x; =
(bK), b=8617x10"° is Boltzmann's constant in electron volts per degree
Kelvin, and X is the temperature in degree Kelvin.

For multiplicative error terms g, the model can be written as

é,:e,.e,., i=12, .-, or logéi=logx:+ﬁl+ﬂ2xi+log8,.,
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and then the regression model of observations in matrix form is given as

Y=XB+¢ ()
where Y =(4,%, --- ,¥v)’ is Nx1 observable random vectors, fB=
(B1,B2, -+ ,Bx) is px1 vector of parameters, and g=(g,,g,, +-- ,65) IS

N x1 unobservable vector of random variables, where the ¢, are independent
random variable with p.d.f. f.(g;).

[ xy X1 RS
X1z X292 Xp2
Xin-py  Xan-p) T Xp(N-p) X
X= = X 3)
Xin-p+1y  Xov-pry T Xp(N-ps1) 2
Xiwv-p+2y  Xov-pry 77 XpN-p+2)
L Aw Xon Aoy |

is a Nxp matrix of rank p(p<N) of known fixed numbers(see ;
Verhagen(1961)).
We will consider here life test experiments in which p, items are put on test

simultaneously at stress level x;, j=1, 2,.--, N, and the test at x, is terminated
at the failure time of the rth item. The model in (2) can be rewritten as
Y, =x/B+e, Q)]

where ¢; is independent p.d.f. f(g,), i=1, 2,-.-, N. Therefore the p.d.f. of ¥,
is represented as

()= £~ xB) )
The following lemmas are required to prove Theorem 2.1.

Lemma 2.1 Suppose d2log f(g;)/de? does not vanish at 4, =Y, —x/f, and is
continuous in some neighborhood (A, —h, A, +h) of A;. Let g(g,)=log fi(¢)),
i=1,2, st ,N. Then the uj(elygz,"'98N)=Z£1xjig;(£i)9 j=1,2, e ip and
their partial derivatives are continuous on the open N-dimensional ball,

By =(A1,A,, --- ,Ay; k) of radius h and center (4, A,, ---,Ay) -

Proof. Let ¢ be given and £, =(£?,€3, --- ,€%) be an arbitrary point in
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By(A,A;, --- ,Ay;h). By the assumption, there exists §>(Q such that
Ixﬁ“g;(gi)—g;(g?)l<g/N whenever |g; —£?|<§. Note that "§—§°||<5 implies
le;—£9| <& for =12, -+« N.Sofor g g°] we have

N N
I”j &- uj(§0)| = _(Zl,xjig;‘(ei)+§xjig;(8?)

N

= —iji(g;(ei)+g}(8?))
i=1

N
< leten-g e <e.
i=1
This establishes that the y, are continuous on By (A,,A,, --- ,Ay;h)- The partial

derivative of y,(g,,€,, --- ,£y) With respect to g, is

M) __
Je, Je

N
Zxﬁg} (&)= x,8(€,).

k i=1
By the assumption, there exists § > such that ( X “ gi(€x)—gi(€?)| < € whenever
lex —€9|< 8. Sofor ¢ —£°| < & we have

du(e) O (e o
“ ée(‘f')— é*(j )“=lxik“gk(6k)_gk(£?)|<8

This completes the proof.

Lemma 2.2 Suppose d?log f.(g;)/de? does not vanish at A, and det(X}) 0,
where X, is given by (3). Then the determinant of D is nonzero when it is
evaluated at (4,,4,, ---,A,), Where

oM _owm . ow]
aeN—pH a3/\/-,:”2 aEN
o, _ow_ . ow
IDI={0€y e Oenpn  en)
u,  m,
98 N~-p+l oe N-p+2 ) de N

proof. Since the partial derivative of the ; are
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auj(81’£29 St SN) =—x d2 logf;c(gk)
ji 2

K = —x;8(&,)
Je, ! de; !
for k=1,2,~-,N and j=1,2,--p, it can be shown from Lemma 2.1 that the
u;(€,€,, -+ ,€y), j=12, --- ,p and their first derivatives are continuous on the

N-dimensional open ball B, =(A,,A,, -,Ay;h). And then, using partial
derivatives of the ’ and the determinant of D, we obtain

TXyN-prl) T KyN-przy T "Xy
D=( ﬁ d° logé(ei))zdet —x2(1;l—p+1) —x2([\:/—-p+2) "’fzzv
i=N-p+1 de; : : . :
TXpw-pely T Epv-pey T "X
¥ d’log f (e,
:(_1)"[ [T 208018 hyeyx:)
i=N-p+1 dg,‘

Hence, under assumptions of lemmas, this completes the proof.
The following theorems relevant to conditional confidence interval estimation
for parameters in regression model are provided.

Theorem 2.1 Let B be the M. L. estimator of B in (2) and B,=

(But,Buz, -+ ,By) denote the true parameter of B. Then one can get the
followings:

1. Z= ﬁ-. B. is a pivotal quantity.

2. A=Y -x' B, i=12, - N are ancillary statistics.

3. If g2 log fi(€;)/de? does not vanish at A, exists and is continuous in some
neighborhood of 4, and det(X4)#0, then A A,, --- | Ay, of the ancillaries are
independent.

Proof. 1 and 2 proofs easily obtained by Lawless(1982).
3. Since

A’=K—£:§(K,IIZ, e 1YN)’ i=1,2’ e 7N (6)
one can getas

(AL A, -+ ,A)=0, j=12, - ,p.
By using Lemma 2.1 and Lemma 2.2, the implicit function theorem guarantees
that numbers J, and /, exist such that for each £1,€2, * EN_ps ‘Ei—Ai(<l1 for
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i=12, --- ,N— p. Therefore, there is unique solution (g,,¢,, --- £y) of
uj(Al’AZ’ - AN=0, j=12, .- |p 7

for which |, -Al<l, i=N-p+], --- ,N. Since gy ., ey pr2, -+ ,Ey are
functions of ¢,,¢,, --- ,EN-p> SAY,

Enpn =vN—p+1(£1’£2’ ’£N—p)
EN—p+2 = vN—p+2(€1’£2’ h ’£N—p)

En = Vy(€1,€p - 1EN_,)
it follows (4, A,, --- ,Ay) that

AN—p+1 = Vn_pal (A, 4, - ’AN—p)
AN—p+2 = vN—p+2(Al’A2’ o ’AN—p)

Ay = vy (AL 4y, L Ay)

Hence, only § — p of the 4; are independent, and this completes the proof.
The following theorem concerning the distribution of the pivotals and ancillaries
also provide an alternate proof of Theorem 2.1.

Theorem 2.2 Under the assumptions of Theorem 2.1, the joint p.d.f. Z and
A=(A,A;, -+ ,Ay_,) is of the form

k(a, X)[] f(a,+x.2)
i=1

Moreover, the conditional p.df. of z given A=(aj,a;, --- ,ay_,) is the same
form.

Proof. The jointpd.f.of ¥, %,, --- ¥y is
N N
[1roo=I150:-28)
i=] i=1

From A, =Y, -x!B., i=12, --- ,N , the inverse transformation can be written as
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Y, =x,b, +x,b, + +x, p+Al
Y, =x,b, +x,b, + +x,b, +4,
Yy-p = Xia- p)b Xyt X b, A,

>
>

YN—p+1 = xl(N-—p+l)b +x2(N—p+1)b2 + o +x bp + VN—p+l (AUAz""iAN-p)

p(N-p+1)

Y, = x,ub, + x,,b, + - +x,,b, +Vy (A, Ay, Ay )

Since the Jacobian matrix J = 3(}’,,1/2,...,YN)/a(A],AZ,.-.,AN_p,E) depends only

on A and the matrix X given in (3) it can be denoted as
= k(a.X) -

Hence the joint p.d.f. of 4 and ﬁ is represented

&(4, ) =k(a. I ] fi(a, +x:(B-B.)-
i=l

This competes the proof.

3. Confidence Interval Procedure for the Eyring Model

In this section we deals with a conditional confidence mterval estimations for
the Eyring model using a generalized form of Section 2.

In life tests, suppose that p, items are put on test at stress level x, and the test is
terminated at the failure time of the r*(<n;),i=12, --- ,N, item failure. The
density function of a lifetime ¢ at stress level y, is

= Lexp-L o ®)
f,-(t,ﬁ)—e exp( 9{), O<t<

where

6; =xiexp(xi B), xi =(Lx), B=(Bi.B2), xi=x'-%,X=3N rx; /3" r, and
x; =1/bK; at which the i th Type II censored test was conducted. Here the
relationship of a parameter 9, and a stress x,, 6, = x; exp(x; B) is called the

Eyring model. If the observed lifetimes at x, are ¥, <¥,< - <Y,
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(i =12, -, N). Then the likglihood function the data assuming the Eyring model is
-1 N
L(p)= H(n r) (Hx ] eXP( 2'} B, +B,x, )
- i=1

X [exp— (2: S. /x,.' exp(B, + B,x; )H

where S, =37y, +(n —r)y, is called the total times on i-th test. So it follows

that the statistics §,,S,, --- ,Sy are jointly sufficient for (B1,B2)- Therfore the
joint density of §,,§,, ... , 8y is given as
y . &)
H 1 — 5/ exp ~2) for 0<s;,<oo, i=12, --- /N.
i=1 1"(;‘,)9,' ’ ei

The procedures to be developed will be disscussed more naturally if we consider
log failure times. The logarithms of the individual failure times follows a extreme
value distribution, although for our purposes here it is sufficient to consider the

logarithms of the total times §,,§,, --- ,Sy. For the Eyring model,
0; = x; exp(B, + B,x;) with the transformation, Y, = logS; +loghK;, i=1,
2, -+ ,N, the joint density of Y;,¥;, --- ,¥, is given as

Y-

N e?’i(r;—l)
L"@“[g r'(r.)e;f(bK,.)"'“ °XP( K9, H [H(bK) exp(t, )]
-H

i=1

10

exp[r(Y x!B)) - exp(¥, - x: B)]

where —eo < y; <00

Let B, and B, be maximum likelihood estimators of B, and B, based on the
sample ¥,Y,, --- Yy, and let §, and B,, denote the true values of B, and B,.
Then from Theorem 2.1 it is easily verify that § g, and f,-p,, are pivotal
quantity, and A, =logs, +loghK, — ﬁ: B,x, are ancﬂlary statlstlcs and
functional independent . Since A, A,, - , Ay, Bi, B, are jointly sufficient for
(B1,B2), AL Ay, - LAvo,, Zi= P, —ﬁ“,, Z, = B, — B., are jointly sufficient for
(B, B,) - Hence by Theorem 2.2, we have that the joint density of Z, and Z,
given A, =a,,A, =a,, -+ ,Ay_, =ay_, 1S given as

f(z,z,la) = k(a, X)H

i=1 i

exp( [a; +2, +2,x,]-expla, + 2z, + 2,x,)) (11)
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where —oo < 7; <00 and —oo < 7, < 0o . The expressions below are simplified when
the x;'s are centralized so thaty ", rx; =0 and (11) reduce to

f(z,,2,0a) = k(a, X)exp(rz, —expz,[a, + 2,7, )} (12)
where r= zﬁl r and k(a,X)= (H’Zl ]/F(n- ))exp(ziﬁ'l r.a; ), In this model,
a =y —1;_@: lOgSi +lOgbKi —Zgl —Bzx,' > where Xi = X; “f, and x;' = l/bK, .

Now we will derive the marginal distribution functions Z, = B, - B, and

ul

Z, = B2~ Pus> given ay,a,, -+ ,an-; to make the confidence intervals for g
and f,,, respectively. By using the transformationy = ez ziﬁlexp(a,.-;- 20x;) it
follows from (12) that the p.d.f. of Z,, given g4 is

N r
h(z,la) = k,(a, X)/ (Z exp(a, +z,x, )] (13)

i=1

where r=Y" . and

kM (a,X)= J:[(z:l exp(a; +2,x; ))rzl-‘dz2 .

Confidence interval statement about f,, follows directly from probability
statements about z, .
To determine the marginal distribution for 7, given g, we consider

P(Z, <tla)= J:f; k,(a, X)exp(rz, - expE‘::l exp(a; +2,%; ))dz,dzz.
Setting y = ¢, the above equation is given as

P(Zl < tlg) - Juo kl (_q, X) J‘exP(l)uN—l

0

exp(——u exp ZZI exp(a; +2,x; ))du dz,

(—2::1 exp(a; +2,x; 'H)) (14)
r Z ’

(_le exp(a; +2,x; )) 2

where r= Zi’i 7 G(8) =(YT(r)) jgur-le-udu is the incomplete gamma function.

=k(@X)_ >

4. Numerical Comparisons

In this section we consider the performance of the conditional confidence



30 Byung-Gu Park+ Sang-Chul Yoon

interval and approximate confidence interval for f§, of the Eyring model in

comparing p.d.f.'s through the Monte Calro simulation. Since the denominator of
(11) tends to be rather large if N is large, it is difficult for us to obtain the
confidence interval for g,, .

We consider the confidence interval for f,,. For ease of computation of
confidence interval for 8,,, z; and z, of the densities (12), (13) and (14) are
replaced by z and using the method of Lawless(1982), h(zla)/h(0la) . we define as
the ratio f(zlq) as

N r
f(da)= h(da) _ (221':1 exp(a;) ] i5)

 hOlg) ::l exp(a; +zx,)

where f(zla) is the p.d.f. of z, given g. Therefore the distribution function of z,
given g is represented as

Pz, <to)=[ hda)dz=f@da)_fadz= fda)F(Ha), (16)
where F(rla)=['_ f(zl@)dz. Since F(wlg)=1/h(0la), it follows that
_Fa) .. i
P(Z, <ta)= ———~——F(°°'Q) = [~ f(zda)dz

Hence, solving the equations

P(Z, St,lg)—%; 0 and P(Z, < l‘zl(_l)-—%:O,
one can obtains the 100(1-a)% confidence interval for 8,, as

P(Br-1<Ba<Br~t)=1-a
On the other hand, to find conditional confidence interval for g, we require to
compute the equations

o N
P(Z <tla)= f h(za)G. {Z exp(a; +zx, + t)}dZ

i=1

. N
=h(0la)[” ZE(Z)E; G,{Z exp(a, +2x, + t)}dz a7)

i=l1

N
= F(ool g_)f: f( g_)G,{z exp(a;, +zx;, + t)}dz.

i=]
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Hence solving the equations
P(Z, < t,lg)—% —0 and P(Z, < tzlg)—% =0

one can obtains the 100(1 - a)% confidence interval for B, s

P -, <B,<B-t)=1-«a

Yoon (1995) studied the accuracy of approximate procedures based on
asymptotic theory for M. L. estimates. Some evidence below indicates that these
procedures are suitable if » is even moderately large, and there are not too many
different levels for stress variables.

An approximate 100(1- )% confidence intervals for 8, and B,, are given as

p N Wy N 2 -1
B i2(1—2/01)\/(’12,.:, 7T Pi) and g, iz(l—z/a)\[(nzi=l 7 p; X; ) ,

where Za-jay 18 the 100(1 - (2/a))% th percentile of the standard normal
distribution and r; is represented by the proportion of n(= ¥ z;) units allocated
to the i th stress level. Also, p, is represented by the proportion of allocated
components failing at the stress level i.

Hence, for the Eyring model at the use condition, the relationship of parameter 6
and stress x is

-1

log éu =logx, + ,@lv + xu,23'2

Recall that for the Eyring models when the use condition X, = x, —X , Where

7=Zil:1”ipix:/zililﬂ"pi'

Example 1 As a first example of the use of the procedure of Section 2, we
consider some data discussed by Tobias and Trindade(1986). For the Eyring

model with K, =358°K, K, =378°K, K, =398 K, where K, =300"K, and
Bi=042, B, =1, and @, = x, CXP(,&I +,bz x.), the accelerated life test data are
generated for ¥ =3 levels of the stress, 7, = /3, i=123, p,=3/7, p,=57,
p; =1 and n=21. The conditional confidence interval(C.C.1.) and approximate

confidence intervals(A.C.1) are given in Table 1, and the graphs of the conditional
p.d.f of Z,]A and the approximate p.d.f. Z, are given in Figure 1.

Example 2 For the Eyring model with g =042, g,=1, K, =318K,
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K,=338°K, K,=358'K, K,=378K, Ks=398K,where K, =300"K, the
accelerated life test data are generated for N =5 levels of the stress,
mi=1/5,i=12, - ,5- p=2/5, p,=3/5, p3=3/10, ps =9/10, ps =1, and
n=50. The conditional confidence interval(C.C.1) and approximate confidence
intervals(A.C 1) are given in Table 2, and the graphs of the conditional p.d.f. of
Z,1A and the approximate p.d.f. Z, are given in Figure 2.

Example 3 For p,=1/2, p, =1/2, ps=2/3, ps =5/6, ps=5/6, and n=150.
The conditional confidence interval(C.C.L) and approximate confidence intervals
(A.C.L) are given in Table 3, and the graphs of the conditional p.d.f. of Z,|A and
the approximate p.d.f. Z, are given in Figure 3.

From figures and tables, one can observe the following facts.(1) In all of the
cases, the widths of confidence intervals decrease as the number of sample size
increases. (2) The widths of confidence intervals decrease as the number of stress
levels increases. (3) For each stress levels, the total testing times are diminish as
the degree of temperature increases. (4) The conditional and approximate p.d.f.'s
agree fairly closely for the total sample sizes of at least 21 under the some
conditions.

Table 1. Total Test Times and 90% Confidence Intervals for the Eyring Model :
N=3, n=21

Swess n; X S; i a;

1 7 3 20921 786.4786 3.1889 0.6768
2 7 5 03770 331.3585 2.3789 1.5820
7 17

3 -1.1658  81.3107 1.0255 1.7714
Parameter L.C.I U.C.1  Parameter True Value M.L.E
gc.cn -0.0977 0.7783 B 0.4200 0.2526
puAa.c.n 02798 0.7850 ﬁ2 1.0000 0.9485
BA.c.n 02798 0.7850 0. 213467.6000 118381.1000

BC.C.I) 0.6064 1.3400
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A

A
I

0
-1.5 -t

L Exact Densily =— App. Normal Density 1

Figure 1. Marginal Density for Z = Bz — B.» with the Eyring Mode! :
N=3,n=2,nm=7i=123,n=3,n=5n="7

Table 2. Total Test Times and 90% Confidence Intervals for the Eyring Model :

N=5 n=50

Stress n; r Xxi S; yi a;

1 10 4 4.6385 16416.8300 6.1089 1.0504

2 10 6 24791 3828.6300 4.7141 1.8150

3 10 7 05610 518.1335 2.7716 1.7906

4 10 9 -1.1541 115.1977 13224 2.0565

5 10 10 -2.6969 28.4827 -0.0234 2.2535
Parameter L.C.I U.C.1 Parameter  True Value M.L.E
B(c.c.n 0.0702 0.6256 B 0.4200 0.3118
BiA.c.h 0.0432 0.5805 B 1.0000 0.9844

B(C.C.Iy 08728 1.1049 9,  213467.6000  168527.8000
Bi(A.C.) 08770 1.0917
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[ Exact Density ~—— App. Nermal Density

_Figure 2. Marginal Density for Z = B2 — B, with the Eyring Model :
N=5n=50,n=10,i=12, --- 5,n=4,n=6,n=7,1n=9,r=10

Table 3 Total Test Times and 90% Confidence Intervals for the Eyring Model :

N=5, n=150
Stress n; r X; Si Vi a;
1 30 15 4.4214 66753.8690 7.5116 2.6702
2 30 15 22620 7979.5534 5.4485 0.7665
3 30 20 0.3439 1336.8570 3.7194 2.9555
4 30 25 -1.3712 284.6358 2.2269 3.1781
5 30 25 -29140 61.0434 0.7389 3.2328
Parameter L.C.I U.C.I Parameter True Value M.L.E
gi(c.c.ry 02567 0.5872 B 0.4200 0.4090
B(A.C.D 02540 0.5641 B 1.0000 0.9995

B(C.C.I) 09353 10666 g,  213467.5600  210182.1000
B:(A.C.I) 09373 1.0616
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I Exact Density w~—=_App. Normal Density l
Figure 3. Marginal Density for 7Z = [32 — B., with the Eyring Model :
N=5n=150,m=30,i=12, --- 5,n=15n=15n=20,n =25, =25
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