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Weighted Estimation of Survival Curves for NBU
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Abstract In this paper, we consider how to estimate New Better Than Used (NBU)
survival curves from randomly right censored data. We propose several possible
NBU estimators and study their properties. Numerical studies indicate that the
proposed estimators are appropriate in practical use. Some useful examples are
presented.
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1. Introduction

In reliability theory and survival analysis of physical, biological, and other
systems, the concept of aging has been found to be very useful. Selection of
appropriate models of life distributions on the basis of specific aging criteria is an
important step when performing reliability analysis. Barlow & Proschan(1975)
and Bryson & Siddiqui(1969), among others, presented a detailed treatment of life
distributions. They discussed aging concepts such as Increasing Failure
Rate(IFR),Increasing Failure Rate Average(IFRA), Decreasing Mean Residual
Life time(DMRL), New Better Than Used(NBU), and so on. We shall consider the
problem of nonparametric estimating the NBU life distribution.

For a life distribution F of the lifetime X of a subject, let S=1-F and H=-log S
denote its survival(or reliability) function and cumulative hazard function,
respectively. A distribution function F with F(0)=0 is said to be NBU if

H(x+y)2 H(x)+ H(y) (1.1)

for all x>0 and j > 0. Nonparametric inference on H is usually based on Nelson
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(1972) estimator H,

< I(Z,'St,5,'=1)
Hn t =
=270 (1.2)
where z =min(X,,C), &,

i=1
. =1(X,<C), C 1s the censoring time variable with a
distribution function G, i=1,..., n, and I(A) is the indicator function of a set A.
Throughout in this paper assume without loss of generality that 72,£2,5.57,. We
shall restrict the estimation problem to compact interval [0,T] ,where T is any
point with F(T)<1 and G(T)<1.

Under model (1.1), we are interested in estimating cumulative hazard function

H(t) = _[h(u)du

and survival function S(t)= exp{-H(t)} for a subject. Note that IFR or IFRA
distribution belongs to the NBU class due to Barlow & Proschan(1975) .

Practically, it is reasonable to require that if the true survival function satisfies
the NBU property, then its estimator should also satisfy the same property. The
product-limit estimator § (Kaplan & Meier,1958), being a step function and a
biased estimator of S, will not be NBU with probability tending to one as Boyles
& Samaniego(1984). Restricting the estimators to be a member of a specific
subclass often results in more efficient than that of the unrestricted estimator by
Reneau & Samaniego (1990). We shall consider that some weighted
nonparametric estimators of the NBU survival curves satisfy NBU property from
similar ideas of Chang & Rao(1993).

Since an NBU survival distribution has a superadditive cumulative hazard
function, it is natural to consider

Hy(x)= Max[ogis,?fysr {H" (x+y)- H"(y)}’H" (x)] -

as our estimator of H(x). The estimator g, is the estimator of Wang(1987) and
also that of Boyles & Samaniego(1984) for the uncensored case. g, is also proved
a strongly uniformly consistent NBU estimator of H by Wang(1987) under
censored data model. Thus we can use $ (x) = exp{-H, (x)} as an estimator of S(x)
in the NBU class. A tipical defect of § is its bias and mean square error(MSE).
Since H, (x) < H,(x), S, is a positively bias in finite samples. In simulation studies,
we showed that for small and moderate sample sizes the bias and MSE of §, can
be quite large when compared those of § .

Since (1.1) can be rewritten as f(x) > H(t)+H(x—t) forall x>0 and 0<¢t<x, an |
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alternative NBU estimator §,(x) = exp{-#,, (x)} for S can be obtained using

Hy(x)= Min[oss?g {Hi(x=1)+ H,(1)}, H, (x)]

(1.4)

The estimator § is the same as that of Reneau, Samaniego, & Boyles(1988)
developed for the uncensored case. We shall study the consistency H,, and
derived from it the largest NBU survival estimator <S§ . The fact that S, is
bounded by § implies that it intends under biased estimator of S. As we shall
point out in section 3, the bias and MSE of §, can be quite large than those of S, in
small to moderate sample sizes.

In view of the fact that § and S, are over and under biased estimators of §,
respectively, it is naturally to consider methods of adjusting these estimators to
reduce their bias. In this paper, we shall present the results of of our researches of
the feasibility of such adjustments to #,, and g,. Correspondingly, S is estimated
by the adjusting cumulative hazard function estimators. Chang & Rao(1992) and
Reneau & Samaniego(1990) discussed methods of adjusting survival function
estimator for the NBU class of a specified age. Chang & Rao(1993) discussed
such methods for the NBU case.

It is easily shown that our methods of adjusting the NBU cumulative hazard
function estimators are convenient for the censored case. These methods provide
NBU survival curve estimators that are not only NBU but also perform very well,
when compared to §, and other previous NBU estimators.

In section 2, we shall show the stronly consistency and NBU property of (1.4).
Using (1.3) and (1.4), we shall give two families of adjusted estimator for the
estimation of an NBU survival function. We shall also show that the estimators
based on either of the two methods satisfy the consistensy property. In section 3,
we shall present the results of a simulation study to comapre the biases and MSE's
of three different survival function estimators selected from Weibull classes.

Finally, Some examples and discussions are given.

2. Description of the NBU estimators

Through the remainder of this paper, we assume that the survival function S
belongs to NBU class. The Following lemma asserts strong convergency of the
estemator (1.4).

Lemma 2.1. If a distribution function F is NBU on (0,20), then (1.4) converges
strongly to the cumalative hazard function H(x) for all x in [0,T] with probability
one.
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Proof. Since the estimator (1.2) converges strong uniformly to the cumulative
hazard function H on [0,T] by Shorack & Wellner(1986,p.304), (1.4) also
converges strongly to H with probability one.

Next, we consider that the estimator (1.4) also belongs to NBU as the same idea
of Chang & Rao(1993) for uncensored case.
Theorem 2.1. If a distribution function F is NBU on (0, ), then (1.4) belongs to
NBU class on [0,T].
Proof. By the Glivenko-Cantelli theorem, there exists a null set M such that for all
o inQ/M,

sup,|H,(x) - H(x)| > 0

Our notation suppresses the fact that the sequences we will consider depend on ).
Since g (0)=0 and g (7) is bounded for all n, we need establish only
convergence of g (x) for x in [0,T]. Let such an x be fixed. For any ¢ in SyM, we
have

Hu(x)="PIH,(x-t)+ H.(1)} 2 H,(x)

0<r<x
which implies that, by Lemma 2.1,
lim, .. Hy (x) = lim H,(x) = H),

We wish to show that for any ¢> 0,

limaoo0 B (x) =l P {H, (x 1) + Ho (0} < H(x)+¢ 2.1)

Osrsx
Suppose (2.1') fails for some fixed ¢ . Then there exist a sequence {; }such that
{Hu(x~1s) + Hu(t)} > H(x) + & foralli 22

The sequence {;} is bounded above by x in [0,T]. We will assume, with loss of
generality, that ; ", for otherwise, we could reconstruct a convergent
subsequence satisf}}ing (2.2). We further assume, again without loss of generality,
that {; }converges monotonically to ;*, and that t, > ¢ from below. We will have
a contradiction to (2.2). If t, =1t from below, then

{Ha(x =1, )+ Hy(ta)} = {H(x—t") + H(t™)}
where H(:7) = lim H(z)F - But
{H(x-1)+H(t")} < H(x)
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for otherwise, there exist an ¢> ¢ such that
{Hx-t" -&)+H(t" - &)} > H(x)
contracting the fact that F is NBU. So, for sufficiently large 5,
{Ha(x=t) + Ha(ta)} < H(x) + &0
contracting (2.2)

Corollary 2.1. $,(x)=exp{-H,,(x)} is the largest NBU estimator among smaller
than or equal to § (x) on [0,T].

Proof. It is easily verified that §, satisfies (1.1) from Theorem (2.1) and that §,(x)
is the largest estimator among <§ (x) for all x in [0,T], by the fact that
H,,(x)2 H,(x) and due to Breslow & Crowly(1974) .

Since §, and §, can be considered the upper and lower bounds to the biased
Kaplan-Meier estimator § it is reasonable to attempt to form an improved
estimator either by averaging ,, and g,. Accordingly, we propose the following
two classes of estimators:

Swa (x) = exp{~Hu (x)* H.(x)-®} 0<a<1. (2.3)

Equation (2.3) also belongs to the NBU class using the fact that both #, and g,
are in the NBU class.

Theorem 2.2. §, , converges uniformly to S on [0,T].
Proof. By Slutsky Theorem and Skrokhod Theorem Theorem, those are easily
derived.

3. A simulation study

As similar as the simulation design of Chang & Rao(1993), for each values,
random samples of size 20 were simulated from each of several survival functions
selected from a NBU family characterized by the following failure rate functions:

The Weibull(W) family with failure rate

hx;0)=(1+6)x% x>0, 020 (3.1)

and censoring times from expontial distributions.

Note that g= ¢ in the W families corresponds to an exponential survival function
with failure rate equal to 1.

The results are summarized in Table 1 for g=0.5 with 1000 replications. A
weighed value of ¢ is 0.6 which is calculated from PC techniques as following



64 Sangbock Lee’

minimax criterion:
71( ) = SUp 20| S (X) = S () (3.2)

In view of Tables, the magnitudes of the standard biases of the adjusted S, were
less than the magnitudes of the standard biases of S,, and S,, in most cases. And
in most cases the MSE's of the adjusted estimates 3, are smaller than those of S,
and §,,.

4. EXamples and Discussions

The first data set in Table 2 reproduced Barlow & Campo(1975), contain 107
failure times of right rear brakes on D9G-66A caterpillar tractors. Doksum &
Yandell(1984) showed that the survival function of these data belongs strongly to
the IFR class(and therefor an NBU) by plotting methods. For the requirement of
the model (1.1) for censored data, a plot toto check (1.1) using the product-limit

Table 1. MSE's and Bias for the estimators

(1) n=20, censoring ratio 0%

g *lo2 05 08 1.7 20
Bias -.0017 -.0008 -.0081 -0125 -0125
Su(x) | MSE | .0046 .0124 .0165 .0126 .0072
Bias .0006 .0082 .0101 .0542 .0687
Su(x) |MSE | 0043 0117 .0153 0126 .0119

Bias | -.0004 .0046 .0027 -.0007 -.0057
Sya(x) |MSE | .0044 0116 0157 .0143 0087

(2) n=20, censoring ratio 10%
102 0.5 0.8 1.7 2.0

Bias 0024 .0024 -0021 -.0024 -.0059
Sa(x) | MSE | .0036 .0127 .0194 .0122  .0077
Bias 0046 .0111 .0155 .0548 .0664
Su(x) |MSE | 0034 0120 .0179 .0124 0114
Bias .0037 .0076 .0081 .0102 .0013
Sy.(x) |MSE | .0035 .0123 .0187 .0139 .0091

S
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Table 1. (Continued.)
(3) n=20, censoring ratio 20%

> o2 0.5 0.8 1.7 2.0

Bias | -0041 -0062 -0111 -0346 -.0278
S.(x) |MSE | .0047 0146 0224 0159 .0079
Bias |-0016 .0041 0125 .0837 .1104
Su(x) |MSE | .0044 0135 0193 0207 .0244
Bias | -.0026 .0000 .0019 -.0260 -.0240
Sy.() | MSE | .0045 .0139 0211 .0178 .0091

S

estimator, § , can be develop by Chang & Rao(1993) and Hollande et al.(1985) as
followings;

dij = $:(Z)8:(Z;)) - 8$:(Z: +Z;)2 0, 1<i, j<n- 4.1

Therefore, a plot of d, VErsus ¢ =z, +7, present a means for graphical check of
the NBU assumption. Figure 1 shows such a plot for the tractor data. The plot
indicates a strong NBU property as like as that of Chang & Rao(1993) for
uncensored case. We present a plot of three survival curve estimators Seir Sy , and
S, in Figure 2.

Table 2. Failure times of right rear brakes(* censored data)

56 83 104 116* 244 305 429 452* 453 503 552 614 661* 673 683 685 753 763 806 834
838 862 897* 904 981* 1007 1008 1049* 1069 1107 1125 1141* 1153 1154 1193*
1201 1253* 1313 1329 1347 1454 1464* 1490 1491 1532 1549 1568 1574 1586 1599
1608 1723* 1769 1795 1927 1957 2005 2010 2016* 2022 2037 2065 2096 2139 2150
2156 2160* 2190 2210 2220 2248 2285* 2325 2337* 2351 2437 2454 2546* 2565 2584
2624 2675 2701 2755 2887 2879* 2922 2986 3092 3160 3185 3191 3439 3617 3638
3756* 3826 3995 4007 4159 4300* 4487 5074 5579 5623 6869* 7739

As a second example, we consider 43 patients suffering from chronic granu-
Josytic leukemia in Bryson & Siddiqui(1969). NBU survival function assumptions
are also reasonable for these data in view of Figure 3. Figure 4 is shown survival
curvers for leukemia data as the same as those of Example 1.

Table 3. Data of patients from chronic granulosytic leukemia(* censored data )

7 47 58* 74 177 232 273 285 317 429 440* 445 455 468 495* 497 532 571 579 581
650 702 715* 779 881 900 930 960 968 1077* 1109 1314 1367* 1534 1712 1784
1877 1886 2045 2056 2260* 2429 2509
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