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A Distribution for Regulated u-Brownian Motion
Process with Control Barrier at x,

Young Sool Park!

Abstract Consider a natural model for stochastic flow systems is Brownian motion,
which is Brownian motion on the positive real line with constant drift and constant
diffusion coefficient, modified by an impenetrable reflecting barrier at X,. In this
paper, we investigate the joint distribution functions and study on the distribution of
the first-passage time. Also we find out the distribution of x4 — RBMPx, .

Keywords : Brownian motion process, first-passage time, z— BMP , reflection
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1. Introduction

Brownian motion has been studied with reference to scientific questions, in
connection with financial problems and in the aspect of engineering. It is
important to be able to evaluate the probability that, within a given time, a certain
'barrier' is reached, as this corresponds in the case of stock-market investments to
finding the chance that the value of the investments falls below a certain level.
And it is also important to find out the distribution of output process in stochastic
flow sysem.

The definitions of Brownian motion process are follows;

(1) Brownian motion process (BMP) is a stochastic process {X,,#2>0} with
following properties:

(a) Every increment X,,, — X, is normally distributed with mean 0 and variance
o’ ; 0 is a fixed parameter.

(b) For every pair of disjoint time intervals [z,1,], [t,,2,], say t, <t,<t, <1,
the increments X, — X, and X, — X, are independent random variables with
distributions given in (a), and similarly for n disjoint time intervals where » is an
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arbitrary positive integer.

(c) X, =0and X, is continuous at #=0.

Under the condition that X, =0, the variance of X, is o’. Hence o is
sometimes called the diffusion parameter of the process. The process
Z, =X,/ o+t is a Brownian motion process having a variance parameter of one,
called standard Brownian motion process (Ross (1983)).

(2) Brownian motion process with drift p(u—-BMP or (u,6)BMP) is a
stochastic process {X,, ¢ 2 0} with following properties (Wendel(1980)) :

(a) Every increment X, ~ X, is normally distributed with mean Y, and
variance g7 ; 4 and ¢ are fixed parameters.

(b) For every pair of disjoint time intervals [f,,7,1,[£,,2,], say ¢, <t, <t, < t,, the
increments X, —X, and X, —X, are independent random variables with
distributions given in (a), and similarly for n disjoint time intervals where n is an
arbitrary positive integer.

(¢) X, =0 and X, is continuous at =0.

2. A joint distribution

Let N, =sup{X,, 0<s<t}, N; =sup{X, +x, 0<s<¢} and then define the
joint distribution function

G(x,y)=P{X,+x,<x, N <y}

Because X =0 by hypothesis, one need only calculate G (x,y) for y >0 and
x<y.

We shall compute G for standard Brownian motion in this section and-then
extend the calculation to general u and o in section3. Fitting u=0 and o=1
throughout this section, note first that

G,(x,y)=P{X,+x,<x, N/ <y}
=P{X, +x,<x} - P{X,+x,<x, N, >y}
=P{X, Sx-x}—P{X,<x—-x,, N,>y—x,}

= cp((x—xo)f%)— P{X,22y-x-x,)
= 0((x—x)r ) -0 +x, - 2)17F)

Now the term P{X, <x, N, >y} can be calculated heuristically using the so-
called reflection principle as follows (Harrison (1985)): For every sample path of
X that hits level y before time ¢ but finishes below level x at time ¢, there is another
equally probable path that hits y before ¢ and then travels upward at least y-x units
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to finish above level y+(y—x)=2y-x attime ¢t. Thus P{X, <x, N, >y} =
P{X, 2 2y -x}, and we obtain the following:

Proposition 2.1 If y=0 and o=1, then
. 1 -1
P(X, +x,<x, N} <3} = (= x,)t H-@f(x-2y+ 1) ) 1
Corollary 2.2 If u=0 and o=1, then

P{X, +x, edx, N, <y}=g,(x,y)dx
where

8(x,y)= {¢((x - xo)t'%)— ¢((x -2y + xo)t‘%)}t'é )

3. A hitting time distribution

Returning to the analysis begun in section 2, we now use the change of measure
theorem to calculate the joint distribution of X, + x, and N in generality.

Propesition 3.1 For general values of g and ¢ we have

P{X, +x, edx, N; <y}=h,(x,y)dx
where

B (x,y) =—i_—exp(ﬂ(x+x0) _ ﬂthgt(x—xo(l—o—) ’ y—xo(l—a))

o? 202 o o

and g (x,y) is defined by (2).

€)

Proof. Only the case o=1 will be treated have; the extension to general o is
accomplished by a straightforward rescaling. Suppose initially that X is a standard
Brownian motion on (Q, F, P) so that

. X-X X—2y+x -1
SPFERRSVIN P =t I C = TN RV
(50 e ) <= {220 o 22 x @
by (2). Now fix >0, let e R be arbitrary, set
1,
&=exp ﬂ(X,+xo)—§# t
and define a new probability measure pP* by taking P*(4)= [ (@) P(dw), A€ F.

Where & is the Radon-Nikodym derivative p* with respect to P(Billingsley
(1986)). The change of measure theorem says that {X,, 0<s<t} is a (u, 1)
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Brownian motion under P, so the desired result is equivalently stated as
P'{X,+x,edx, N <y}

= exp(y(x+xo)__/‘i22_t){¢(x:/;o) _¢(x— %}); x‘))}t—%dx %)

To simplify typography in the proof of (5), let us denote by 1(4) the random
variable that has value 1 on 4 and value zero otherwise. Using (4),

P{X +x,<x, N, <y}
=E"{I(X,+x,<x, N, <y)}
= E{&-1(X, +x0<x, Ni <))

T2
=E{exp N(Xt+x0)-y?t-)'1(Xr+x0$x’ Nl*sy)}

. 2
.—_'[ exp u(z+x0)——’l£2£]P{X, +x,€dz, N <y}

= I;exp #(Z+xo)—£gj{¢(z:/;o)—¢(Z—2j;+xo)}f%dz

Differentiating with respect to x gives (5) as required.

Theorem 3.2 Let G,(x,y)= P{X,+x,<x, N, <y} as in section 2. For general
values of y and ¢ we have

N = I

Proof. By specializing the general formula (3) for 4 accordingly, we obtain

H(x,y) = [ h(z,y)dz
1 H(z+x0) gt z—x0) [z2=2y+x0
-.[wgﬁexP( o? : 202j{¢( a\/t_) ¢( ot )}dz
= exp(— ;;tz jj; 0_1/; exp(:u(z; xo))

WA=
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B B(x+x)  pt \po Uz z+x—x,
“”‘"( 7 202)1 ol 5o (=)

_ z+x—2y+x0)}d
oo b5 o L .
=exp(ﬂ(xo‘-*;xo) _ ;Gtz)(\P(x-xo)—‘P(x—Zy+xo))

where

v Lol )5l e
How let k(x,t) = (x—,ut)/o'\/;, we have
wom Lo )3 ol 152
onl o oA )
= exp(é—g— ) f(”)¢( )du

‘t x
= exp(é’u;; - —O—_’;ﬁ) D(k(x,1))

Substituting this into (7) gives the desired formula.
Corollary 3.3 If x, =0, then

2uy (x-Zy——,ut)
H (x,y)= (I)(af) EXP(J)(D———G«/; (8)
forall 1 > 0.

If we define 7, as the first ¢ at which X, +x, = y, then obviously 7,> ¢ if and
onlyif N < y.

Theorem 3.4 For general values of u and o we have
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0ol S ) W)

for y >0.
Proof. Letting x T y in (6) gives

P{T, >t} = P{N; <y}
=H,(y,y) for y>0

4. A distribution for ;1 —~ REMPx,

Definition 4.1 If {X,,#>0} is Brownian motion process with drift U define an
increasing process L and a positive process R by setting

L =sup{-X,+x,, 0<s<t} ¢20, x,20
and
R =X +I,
=sup{(X, - X, +x, 0<s<t)} >0 (10)

is called regulated p1-Brownian motion process with a lower control barrier at x,,
which we abbreviate to 4 .

We focus on g — RBMPx ,,which is Brownian motion on the positive half line
with constant drift 41 and constant diffusion coefficient ¢?, modified by an
impenetrable reflecting barrier at x,. A slight modification of the argument used
in section 2 and 3 gives the joint distribution of X, and L from which one can
obviously calculate the distribution of R. But here is an easier way. Fix ¢>0 and
for 0<s<t let X=X, -X, . Note that x'={Xx' O<s<s has stationary,
independent increments with X, , =0 and X' ~ N(us, o’s) thus x* is another
{4 — RBMPx ; Brownian motion with starting state zero. Combining this with (10),
we get

R =sup{(X,— X +x,, 0<s<1¢)}
=sup{(X, - X,_ +x,, 0<s<1)}
=sup{(X; +x,, 0<s<1)}
~sup{(X,+x, 0<s<t¢)}
=N’

(Here the symbol ~ denotes equality in distribution.) Thus the distributions of R,
and N, coincide for each fixed ¢, although the distributions of the complete
processes R and N* are very different.

The marginal distribution of y* was displayed earlier in (9), and we obtain the
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following theorem:

Theorem 4.2 If R represent the state of 4~ RBMPx, at time ¢ then

0o (R oo (=)

for all ¢ > 0.
Thus as ¢ — o,

) ool 5]
P(R <7)— exp( p —exp —0_2— if u<0 (12)
0 if u20

For n <0 and x,=(, the limit distribution of (12) is exponential with mean
o’/2|u|.
5. Numerical results

Suppose the level of dam is a 1-Brownian motion process with a lower control
barrier at x,. The three values of formula (3) in Proposition 3.1, x, y and x,
indicate as following:

x . proper level
y : dangerous level
Xy : barrier level

The result of formula (3) is shown if Figure 1, given pu=14(1)18, 0=5, x=50,
y=70 and x,=2. Also, if we have two particular cases when =20, o=6,
x=25(5)45, y=70 and x,=2 and u=10, 0=4(0.5)6, x=50, y=70 and x,=2, the results
are plotted in Figure 2 and 3 respectively.

Figure 4 displays the values of P(R <z) for u=-1, 0=2, r=1000, and various
barrier points x,. We can confirm that the converges to exponential distribution
with mean 2 as x, goes to zero through Figure 4.
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Figure 2 The probability of 1 (x,y)
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