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Rank of the Model Matrix for Linear

Compartmental Models
Jea-Young Leel

Abstract This paper will show that the rank of the model matrix of a closed, » com-
partmental model with £ sinks is n-k. This statement will be extended to include open
compartmental models as a part of theorem.
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1. Introduction

An increasing amount of discussion in the literature has been developed to the
complete observability(CO) and complete controllability(CC) of the linear, time-
invariant models described by

X=Ax+Bu
y==Cx (1.1)
xeR"; yeR”, ueR"”

which incorporate a priori structural information of the system being modeled as
parameterization of the model matrix 4 and other matrices B and C(Bellman
(1970), Cobelli et al.(1987), Godfrey(1983), Godfrey et al.(1987), and Simon et al.
(1991)). The analysis is related respectively to complete controllability (CC) and
complete observability(CO) relies heavily on the rank of the model matrix
(Grewal et. al.(1976), Jacquez(1985), Kalman(1963), and Lee(1995)). The area,
involving the rank of the model matrix, requires some standard representation of
the model matrix so that general statements regarding its rank can be made. Using
the results of the graphical decomposition of Lee(1995) along with the polynomial
matrix results, this paper will show that the rank of the model matrix of a closed, »n
compatrmental model with & sinks is n-k.
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This statement will be extended to include open compartmental models as a part
of theorem 2.1.

2. Analysis of the Model Matrix

The model matrix for any closed compartmental model can be written in the

form,
A=-NKN" 2.1)
where N = incidence matrix of the model's digraph
N =N with all -1's set equal to zero
K = diagonal matrix whose elements correspond to the flow parameters of
the arcs.

Equation (2.1) can be justified in the following manner. Let g, be the number
of arcs directed away from vertex i. Arrange the incidence matrix, N, by
designating the first g, columns of N for arcs leaving vertex 2, etc. Furthermore,
arrange the rows of N so that row i, N, of N corresponds to vertex(i =1,2,---,n).
Let k; be a (g, x 1) vector of flow rate parameters for arcs leaving vertex i with
the parameters arranged to correspond with the order of the arcs in N. Then
equation (1.3) can be written as (assuming zero input for convenience),

X, = “Ni[klxnkzxza"',kn)-cn]T i=12,,n. (2.2)
Also equation (2.2) can be written in the form,
X, = =NK[x;" X, %Xy, %, %, ] (2.3)

where the diagonal elements of K are arranged to correspond with their
positions in equation (2.2). Next equation (2.3) can be written as

%, =—NKN'x (2.4)

where the first g, elements of the first column of N7 are 1's and the remaining
elements zeros; the next g, elements of column 2 are 1's and all other elements
are zero; etc. Therefore, N7 is precisely the transpose of N with all -1 elements
set equal to zero. Since equations (2.2) through (2.4) are valid for i =12,---,n,
equation (2.1) follows.

Example 2.1. Consider the following closed model.
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-k
\T@;;@\/

Then the model matrix 4, can be written in the form,

k,, Ti 0 0 0 0]

(1 1 -1 0 0 0 O] ky, 0 1 0000
-1 0 1 1 1 1 0 ky, 01000
A=|{0 0 0 -1 0 0 1 ks, 01000
-1 0 0 -1 0 0 k, 01000
00 0 0 0 0 -1 -1 0 ks, 01000
i kO 0 1 0 0]

Note that q,=2, ¢,=4, ¢,=1, q,=q; =0. Also, k, =[k,,k,)], k, =[k;, ks,
ki ,ks,] and ky =[ks;].

Let n = number of vertices (or compartments) and ¢ = number of arcs (flow
channels). Then the dimensions of N, N7, and K are (n x g), (g x n), and (g x q)
respectively. Furthermore, since

r(4)=r(NKNT), 2.6)
it follows from Busacker et al. (1965) that
F(N)+r(K)+r(N")~2g <r(4) < minfn -1, (N} e

However, for connected digraphs, #»(N)=n-1 and r(K) =g >n—1 (a connect-
ed graph with n vertices must have at least n-1 arcs). Then inequality (2.7) can be
reduced to

F(N)+n-g<r(4)< min{n—l, r(ﬁ)} (2.8)
and for a digraph with n-1 arcs,
r(4)=r(N) 2.9)
for all nonzero flow rate parameters.

Proposition 2.1." Given a closed compartmental model which has a digraph with
n vertices, n-1 arcs, and no more than one arc is directed away from a vertex.
Then the rank of the model matrix, 4, is n-1.
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Proof. From equation (2.9), r(4) =r(N). Since no more than one arc is directed
away from a vertex, there is at most one zero element in each column of N7.
Also, there is exactly one nonzero element in each row of A7 corresponding to
each arc in the digraph. Therefore, »(N7) = —1 and, consequently r(4)=n—1. 0

The next proposition concerns the rank of the model matrix for a closed
compartmental model having a digraph, D,, and the rank of the model matrix for
a closed compartmental model having a digraph, D,, which can be constructed
from D, by adding an arc between vertices of D.

Let 4, be the model matrix corresponding to the digraph, D,, and 4, be the
model matrix corresponding to the digraph, D,. Let g, equal the number of arcs
in D, and &, be the flow rate parameter of the arc added to D, to the form D, .

Proposition 2.2. If »(4,)=n-1 on a dense subset of R%, then r(4,)=n—1 on
a dense subset of R%*1.

Proof. Let k be a g; vector of flow rate parameters in D,. If the added arc is
directed away from vertex i to vertex j and the flow rate parameter for the arc is
k., then

N Ed
A+4=K, (2.10)
with K, =k, (e; —¢)e and e, is a vector of appreciate dimension having the i th

element ( which equals one) as the only nonzero element. Since 4, and 4, are
model matrices for closed compartmental models,

ST, =f"4,=0 (2.11)
then »([4,, f]) =n on a dense subset of g2 . Now from equation (2.10),
(4, f 14y, f1 =04, FNAL ST + AK + K, 4] + K, K] (2.12)

Since r([4,, f]) =n clearly, ¥(4,) =n—1 on a dense subset of g#*'. O

Combining propositions 2.1 and 2.2, the following important proposition can be
obtained.

Proposition 2.3. The model matrix, 4, of a closed compartmental model with a
strongly connected digraph has r(4) =rn—1 on a dense subset of R? ( ¢ =number
of flow rate parameters).

Proof. Select a vertex, n,, in the strongly connected digraph, D. Since the
digraph is strongly connected, every vertex in D has a path which leads to #,.
Therefore it is always possible to construct a directed subgraph of D which
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satisfies the hypothesis of proposition 2.1. Let the model matrix corresponding to
this directed subgraph be 4. Then by proposition 2.1, r(4)=n—-1. Now D can be
constructed from the directed subgraph by adding arcs. By proposition 2.2,
r(A)=n-1 on a dense subset of R7. [

This proposition provides a mean of assessing the contribution of sinks to the
rank of the overall model matrix. However, the strongly connected subgraphs
corresponding to sources and transits always have an arc directed away from one
of their vertices toward a vertex in another subgraph. This introduces an extra
term in the model matrix of the strongly connected subgraph (note the difference
between 4. and A or A, and A, in equations of Lee (1995)). The following
proposition accounts for the effect of this added parameter.

Proposition 2.4. If 4 is the model matrix of a closed compartmental model with a
strongly connected digraph having n vertices and q arcs, then

r(A-K)=n (2.14)

where K, = k,e,e] , k, is an independent parameter, and i =12,---,n—1, or n.

i

Proof. Let D be the strongly connected digraph with n vertices, g arcs, and
corresponding model matrix, A By proposition 2.3, 7(4) =n—-1. Construct a new
digraph, D, with n+1 vertices, by adding an arc from vertex i of D to a new
verteX, zero. Let the flow rate parameter of the new arc be k,. Then the model
matrix, 4, corresponding to D is

A= 4 0 | (2.15)
Lkel 0 '

Where 4= 4-K, and ¢, is a zero vector except for a one in the i th position.
From proposition 2.3, there is a directed subgraph of D which has # vertices, n-1
arcs, and no more one arc is directed away from a vertex. Furthermore, the
directed subgraph may be selected so that vertex i has no arcs leaving it. Then, the
new digraph, D, contains a subgraph satisfying the hypothesis of proposition 2.1.
Then by proposition 2.1, r(dy=n- Since f7j3-¢, any n rows of A are
independent. Therefore, r(A4) =n On a dense subset of R4+ []

Finally, the conclusions of propositions 2.3 and 2.4, along with the standard
form of the model matrix 4 (p.57 Lee(1995)) can be used to prove the directed
statement regarding the rank of the model matrix.

Theorem 2.5. A compartmental model with n compartments and a total of %
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sinks, 1 of which have excretions, has a model matrix, 4 with #(4)=n—-k +1.

Proof. Consider a closed compartmental model and equation (1.1). Every source
and transit has at least one arc directed away from its subgraph. Then,by
propositions 2.4, r(4,,) = ny, where ng,= number of vertices in i th source, and
r(A,,) = n;, where n;,= number of vertices in the  th transit. Then from equations
of Lee (p. 57-58, 1995),

J h
r(Ase) =D ng, and r(4)=Yn, (2.16)
i=] i=1

Each sink has no leaving arcs. By Proposition 2.3, r(}fscj) =ng,; —1 where
Ag,=number of vertices in 7 th sink.
Then from Lee (p58, 1995),

k k
r(Ase) =2 (ng =1 = (X nge)~k @2.17)
i=1 i=]
Therefore, for closed compartmental models,

r(d4)= r(ZSC)+r(ZT)+r(ASK)

J h . k

= (Z Rgci) +Z”r, ) +(Z Mg )—k
i=l i=1 i=1

=n—-k

For open compartmental models, the rank of 4 will increase by one for every
sink which has an excretion. Therefore, 7(4)=n-k+1. [

3. Conclusions

We conclude that the rank of the model matrix of a closed, n compartmental
model with % sinks is n-k.
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