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An Alternative Method of Regression:
Robust Modified Anti-Hebbian Learning

Changha Hwang

Abstract A linear neural unit with a modified anti-Hebbian learning rule has been shown
to be able to optimally fit curves, surfaces, and hypersurfaces by adaptively extracting the
minor component of the input data set. In this paper, we study how to use the robust
version of this neural fitting method for linear regression analysis. Furthermore, we
compare this method with other methods when data set is contaminaied by outliers.
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1. Introduction

The most commonly used regression method is that of least squares(LS). It was
discovered independently by C. F. Gauss in Germany around 1795 and by A. M.
Legendre in France around 1805. Early applications of the method were to astronomic
and geodetic data. Its first published appearance was in 1805 in an appendix to a book
by Legendre on determining the orbits of comets. Since its discovery almost 200 years
ago, LS method has been the most popular method of regression analysis. Over the last
two or three decades, however, there has been increasing interest in other methods. This
1s due partly to discoveries of deficiencies in the LS method and partly to advances in
computer technology, which have made the computational complexity of other methods
a relatively unimportant consideration. Numerous research articles have now been
published on alternative approaches to regression analysis. In many cases, LS method is
suboptimal, and the optimal LS method is the so called total least squares(TLS) method.
In this paper, we will discuss in some detail that the problems of optimal fitting in TLS
sense can be described as minor component analysis(MCA) problem and a linear neural
unit with modified anti-Hebbian leaming rule can solve the problems.

Neural networks have been vigorously promoted in the computer science literature for
tackling a wide variatey of scientific problems. Recentely, investigations have started to
see how useful neural networks are for tackling statistical questions in general, and for
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nonlinear regression modelling in particular. By the way, when there is a strong
evidence on that linear regression explains very well the given data, we had better use
linear regression instead of using nonlinear regression. Therefore, it is pertinent to
investigate how well a linear neural unit with modified anti-Hebbian learning(MAHL)
rule and its robust version perform. In this paper we investigate the performance of
robust modified anti-Hebbian learning(RMAHL) rule for the data set with or without
some outliers. Section 2 is a review of TLS method and MCA. Section 3 describles a
RMAHL rule and its relationship with MCA. In section 4, through three examples we
compare RMAHL rule with other method: least-absolute-deviations, robust M-,
nonparametric rank-based and ridge regression.

2. Total Least Squares Method

The following brief account of TLS method is intended to make this paper as self-
contained as possible. However the reader may find it helpful to read Xu et al. (1992).
The LS method is the most commonly used one to fit a given data set. For example,
given a data set D={( V,»%,),i=1,2,---,n}, the problem of using a line model
y=a+pf to fit p in the usual LS sense becomes the problem of finding a pair of

estimates p, ﬁ such that
E(a, = mmZ(y —a~px). 1)

In fact, this implicitly assumes that only the measurements y, contain errors while the
measurements x are accurate. However, in many applications such as in image
recognition and computer vision, all the measurements contain a certain degree of
errors. In such cases, a line = g+ ’éx obtained in the usual LS sense is not optimal.
The optimal way should be to minimize the sum of the squared lengths of all the bars
which are perpendicular to the estimated line.

E(&,p) = mlnz(y’ 2 ﬂx) (2)

This is the basic idea of the so called TLS method. In comparison with the usual LS
method, to obtain the solution of TLS is generally quite burdensome. The computations
for TLS are more involved than for LS. Equation (1) can be reduced to a problem of
solving linear equations, while equation (2) results in a problem of solving a third order
nonlinear equation of 3. For the more general case which involve a large number of
variable, the problem becomes more complicated. This is probably why TLS has not
been as widely used as the usual LS method although the basic idea of TLS was
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proposed long ago.
In the case of line or hyperplane fitting, when the line or hyperplane models can be
reexpressed as

ax, +a,x, +c, = 0, 3)
ax; +ax,+-+a,x,+c, = 0 4)

where x, j=1,..., p are variables and c, 1s an arbitrary constant. Again let us take the

problem of line fitting as an example. For equation (3), the TLS fitting problem is to
minimize the following total least square error

n
E= Zr,z, r= ,alxl(’) +a,x +c0’/‘/a12 +a’ (5)
i=1
Let 4 = [apaz]T and X, = [xl("), xg")]T. Then £ can be further reexpressed as

2
T
= (a7, +¢,) a’Ra+2ca’e+cl
E=Y2"7"% ¢ :
< a'a a’a

" ©

where ¢ R are the mean vector and the autocorrelation matrix of data set p. From
dE / da = 0, the critical points of g should satisfy

a’Ra+2ca’e+c’ (7

Ra+ce-da=0, 4 = -
In general, equation (7) is difficult to solve because it is a third order matrix equation.
Here, we use a special strategy for solving the equation. First, by taking expectation on
both sides of equation (4), we can obtain

o
c,=-a'e, 3)

Then, substituting (8) into (7) and simplifying yield
2 Za )

a’a
where ¥ = R —ee” is the covariance matrix of data set ). So, we see that the TLS
porblem can be reduced to the problem of finding the minimum eigenvalue and its
corresponding normalized eigenvector of matrix 3", or in other words, finding the first
minor component of data set p.

It is not difficult to see that for plane and hyperplane expressed by equation (4), if we
let a = [a,,a, ,__,,ap]T and x = [x?,x0,... ,xf,’) ], equations (6), (7), (8), and (9) will also

2a-ia=0, 1=
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hold. In general, the same technique applies to curves and hypersurfaces expressed as
afi(®+af(X)++a, f,(X)+¢ = 0, x=[x.x,,....x,T,

where £ (x) is a function of x. For example, quadratic curves are expressed as
!
axX; + X%, + a5 +a,x, +agx, +¢, = 0.

If we first transform each X, into £ =1A&), L,(x),-.., f,,,(x,.)]r, we can obtain the
same equations as equations (6), (7), (8), and (9) for the problems of TLS hypersurface
fitting.

3. Robust Modified Anti-Hebbian Learning

In the previous section, it is illustrated that the TLS method reduces to finding the
minimum eigenvalue and its corresponding normalizaed eigenvector for the covariance
matrix of the data. In other words, the problem reduces to finding the minor component
of the data set. Here, we explain how to obatin the minor component by neural network.

Consider the liner neural unit with inputs x(t) =[£,(0),, §p(t)]r, weights
m(t) =[p (1), -, u,(+)) and output

) = ij(r)é(z) = m"()x(?)

It has been shown (Oja 1982) that by using a constrained Hebbian learning rule as
follows :

L+ = (D) + (DO EE) -y (D, (1)) or
m(t+1) = m(t)+ a()(y()x(t) ~ y* (Hm(r)) (10)

the unit learns to functicn as a principal component analyzer of the stationary input
vector stream x(t), in the sense that the weight vector m(;) tends asymptotically to the
principal eigenvector of the input data correlation matrix. In (10), a(t) 1s a positive
scalar gain parameter that must be chosen in a suitable way.

Here, we still use the same linear unit but change equation (10) into a constrained anti-
Hebbian learning rual given either by

m(t+1) = m(t)~ () y(O[x(t) - y(t)m(t)] (11)
or its normalized version

y(t)m(t)

m(r+1) = m() - aOyOXO -7

I (12)
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By expanding m(r) in terms of eigenvectors, the following theorem can be proven.
See for details Xu et al. (1992).

Theorem 1. Let p = E(x"x) be positive semidefinite autocorrelation matrix with the
minimum eigenvalue of multiplicity one, and let 2 in and C. be the minimum
eigenvalue and its corresponding normalized eigenvector of g. If m(0)"c_. #0,then

limm(¢) = ¢, or —c_,

PR min

A, = min{m’Rm)}.

min

}imm(t)TRm(t)

We will see that the neural unit with learning equation either equation (11) or (12) can
be directly used as an optimal TLS fitting analyzer if ¢ = E(x) = 0 for input data set p.
In this case, equation (8) shows that ¢ = ( results in ¢, =0.

In the case that ¢ = E(x)# 0, the above unit can not be used directly. However,
noticing that 3 = R—ee’ = E[(x-e)(x—e)"], we see that a slight preprocessing of
subtracting e from each data point can make all the above discussions remain true. The
only extra issue here is that the representation of the fitted hyperplane needs not only the
obtained final solution g alone but also an accompanied parameter c,=-m’ex0.

However,almost all the MCA algorithms are based on the assumption that data have
not been spoiled by outliers. In practice, real data often contain from the data set. In
what follows, a robust version of modified anti-Hebbian learning rule will be discussed.
See for details Xu and Yuille(1995). Here we still use the same linear unit but different
learning rule given by

1

1+ exp(ﬂ(z(x(t), m(t)) _ 77)) [y(t)X(t) -y (I)M(t)]

m(t + 1) = m(t)-a(t)

where z(x(r),m(1)) = x"(1)x(t)—(m" ()x(t)x" (t) m(r)) / m” (r) m(z)- Notice that, as
t—>o, a(t)—>0and f5 .

4. Numerical Illustrations

In Section 2 we see that the TLS method reduces to finding the eigenvector
corresponding to the minimum eigenvalue for the covariance matrix of the data. In
addition, we realize that we can use the commonly used methods in Statistics to obtain
this eigenvector, even when there are some outliers in the data set. The preliminary
simulation study was conducted to see how well the RMAHL rule works for the
artificial data with zero mean vector. Here, this artificial data set contained some
outliers. According to this study, this learning rule worked reasonably well compared
with the widely used methods in Statistics.
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To get a more concrete idea of how the RMAHL rule performs in the regression
problem on real data, let us look at three examples. For the comparisons on three data
sets, we use LS regression, least-absolute-deviations(LAD) regression, M-regression,
nonparametric regression and ridge regression besides the robust modified anti-Hebbian
learning. Three data sets are acid content data, turnip green data and stack loss data. See
for details Birkes and Dodge(1993). Some results are taken from their book.

By the way, we should do a slight preprocessing of subtracting mean vector from
each data point since it is not zero for three data sets used for the comparisons. We use a
10% trimmed mean vector to apply RMAHL rule. See for the reason Seber(1984).

Example 1. Consider the acid contend data with no outliers. We see from Birkes and
Dodge (1993) that all the data points fall closely around a straight line. For such a well-
behaved data set, all the regression methods give very similar results. LS estimates of
B,, B, are35.46 and 0.3216, respectively. Compared to the LS estimates of B, and g3,
the LAD estimates were within 2%, the M-estimates were exactly the same, the
nonparametric estimates were within 1%, and the ridge estimates differed only in the
fourth significant digit. RMAHL estimates of B,, B, are35.61 and 0.3219, respectively.
MAHL estimates are very similar to RMAHL estimates. Here, 4 = 0.01, =500, and
7= 0.02 have been used to obtain RMAHL estimates. The estiamtes of o were not as
close; they were 1.230, 1.433, 1.595, and 1.364 for LS, LAD, M-, and nonparametric
regression, respectively. '

Example 2. Let us apply all six regression methods to turnip green data. Table 1 lists
the estiamtes Bo, ﬁ] X ,Bz i ,25'3, ,234 of the regression coefficients, the estimate & of the
standard deviation of the error population, and the number N, of standardized residuals

with absolute value large than 2.5.

Table 1. Results on Turnip Green Data

Bs B 5, )i B c N
Least square 119.6 -0.03367 5.425 -0.5026 -0.1209 6.104 0
LAD 133.8 -0.05301 6.635 -0.6974 -0.1460 4.140 4
M-regression 122.7 -0.03967 5.763 -0.5443 -0.1282 4.177 4
Nonparametric 123.7 -0.04478  6.043 -0.5583  -0.1339 4.509 3
Ridge 1159 -0.02805 4.807 -0.4363 -0.1089
RMAHL 665.6 0.77801 -5.112 -9.0240 0.0752

For the ridge regression and RMAHL methods, only the estimates of the regression
coefficients are given because these methods are intended to be used only for
estimation. Here, we took these solutions as estimates after 9,000 iterations with
a=0.01,8=3.5, and 5=0.6502 since RMAHL estimates oscilated in the range of
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some values. The five estimation methods in the table produce estimated coefficients
that are noticeably different although "in the same ballpark". LAD, M-, and
nonparametric regression are especially suitable when there are outliers in the data.
another. Ridge regression is especially suitable when there is collinearity among the
explanatory variables. Because of the high correlation of 0.997 between X, and
X,(= X;), we expect ridge regressxon to glve more accurate estimates of g, and B,
than LS. Note that ridge estimates ,31 ,32 , ﬂp and ﬂ are all closer to O than the
corresponding LS estimates. This agrees with the description of ridge regression as a
procedure that shrinks the LS estimates. RMAHL rule gives erroneous resuls. We guess
it is because of the collinearity among the explantory variables. We also think this
agrees with theory. So, we should be cautious in using RMAHL rule when there is
collinearity among the explantory variables.

Example 3. Next we consider a data set that has appeared as example in many books

and articles. The data set consist of measurements from a factory for the oxidation of
ammonia to nitric acid. On 21 different days, measurements were taken of the flow( X))

the temperature of cooling water( X,), the concentration of acid( X,)- and the amount of
ammonia that escaped before being oxidized, called stack loss(y). All six regression
methods were applied using the model = By +B.X, +BX, + B X, Table 2 shows the
estimates 3 3 B,,B,, and &, the number N, of standardized residuals with absolute
value large than 2.5. There are significant differences in the estimates of g, B> B> and
B, for the six methods. This is at least partly due to outliers. As in Example 2, the M-
and nonparametric estimates are similar to one another. Here, 4 = 0.01,4=125, and
n=1.3366 have been used to obtain RMAHL estimates.

Table 2. Results on Stack Loss Data

By 4 B, B o Ny
Least square -39.92 0.7156 1.295 -0.1521 3.243 0
LAD -39.69 0.8319 0.574 -0.0609 2.171 3
M-regression -41.17 0.8133 1.000 -0.1324 2.661 1
Nonparametric  -40.16 0.8155 0.888 -0.1202 2.920 1
Ridge -40.62 0.6861 1.312 -0.1273
RMAHL -44.31 0.4091 2.515 -0.1869

In each example above we have applied six different mothods of regression to the
same set of data for the purpose of comparing the methods. If our only purpose had been
to analyze the data, it would still be good practice to apply more than one (but maybe
not as many as six) regression methods. If you use several methods to analyze a data set
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and they all lead to similar results, you can feel confident about your conclusion. If there
are serious disagreements between the results of the different methods, you should
examine the data to see why.

TLS method is the one of using the so called minor component in order to fit
regression model. It is well known that TLS method is very sensitive to outliers since
covariance matrix is so. The linear neural unit with RMAHL can be applied to linear
regression analysis. It has turned out that this method is also very sensitive to outliers
and collinearity among the explanatory variables. Therefore, we need to be cautious in
applying this method to regression analysis.
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