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On the Categorical Variable Clustering
Daehak Kim

Abstract Basic objective in cluster analysis is to discover natural groupings of items or
variables. In general, variable clustering was conducted based on some similarity measures
between variables which have binary characteristics. We propose a variable clustering
method when variables have more categories ordered in some sense. We also consider
some measures of association as a similarity between variables. Numerical example is
included.

Keywords : cluster analysis, categorical variable, measures of association, hierarchical
clustering, dendrogram

1. Introduction

Clustering is the grouping method of similar objects. Grouping is done on the basis of
similarities or dissimilarities between objects or variables. Cluster analysis has been
used for decades in the areas of taxonomy, medicine, anthropology, marketing research
and so on. Cluster analysis is highly empirical. Different methods can lead to very
different grouping, both in number of cluster and content.

There are two key steps in applying the clustering procedure. First, we need to decide
on a measure of inter-object similarity. Secondly, we must specify a procedure for
forming the clusters based on the chosen measure of similarity. Most efforts to produce
a rather simple group structure from a complex data set necessarily require a measure of
closeness or similarity. Important consideration include the nature of variables or scales
of measurement and subject matter knowledge. When items are clustered, proximity is
usually indicated by some sort of distance.

On the other hand, variables are usually grouped on the basis of correlation coefficient
or like measures of association. In some applications, it is the variable rather than the
items that must be grouped. Similarity measure for binary variables can be easily
defined and widely used.

However, in reality variables can have more than two categories. So we consider
variable clustering for these cases. When variables have more categories than two, we
assume these categories are ordered in some sense.

Hierarchical clustering techniques proceed by either a series of successive mergers or
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a series of successive divisions. Agglomerative hierarchical methods start with the
individual objects. So there are initially as many clusters as objects. Eventually as the
similarity decreases, all subgroups are fused into a single cluster. Divisive hierarchical
methods work in the opposite direction. An initial single group of objects is divided into
two subgroups such that the objects in one subgroup are far from the objects in the
other. The results of both agglomerative and divisive hierarchical methods may be
displayed in the form of two dimensional diagram known as dendrogram. Dillon and
Goldstein(1984) have discussed another approach to cluster analysis, graphical
methods.

Linkage methods are one of the most widely used agglomerative hierarchical method.
Single linkage method merges two cluster based on smallest distance or nearest
neighbor while complete linkage method are based on maximum distance. Average
linkage method merges two clusters based on average distance.

In this paper, we consider variable clustering with hierarchical linkage methods when
variables have more categories which is ordered in some sense. We also considered
some measure of association as an similarity measure between categorical variables.
Numerical example shows that proposed method works well.

2. Similarity measures for categorical variables

When the variables are binary, the original data can be rearranged in the form of a
2 x 2 contingency table with corresponding variables. For each pair of variables, there
are p items. With the usual 0 and 1 coding, the contingency table for variable ; and
variable % becomes as follows.

Table 1. Contingency table

i\k 1 0 Totals
1 a b a+b
0 c_d c+d

Totals | g4¢ b+d n

The usual product moment correlation formula applied to the binary variables in the
contingency table gives

ad-bc o
[(a+b)(c+d)a+c)a+d)]"?

This number can be taken as a measure of similarity between two binary variables.
Variety similarity measures for the table 1 were developed and adequately discussed in
Johnson and Wichern(1992). Simplest ones are

g:

a+d Q)
n
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and

_ 2a+d)
2a+d)+b+c’

Where (2) gives equal weight for 1-1 matches and 0-0 matches while (3) gives double
weight for 1-1 matches and 0-0 matches. Monotonicity is important because some
clustering procedures are not affected if the definition of similarity is unchanged in a
manner that leaves the relative orderings of similarity unchanged.

But in many practical situations, variables can be classified to many categories
according to the intrinsic and relevant order. In these cases, for example, data can be
rearranged as table 2 when variable ; have g categories and variable f have p
categories.

&)

Table 2. 4 x p contingency table

ik |1 | 2 p | Totals
1 Ny | Ny Ny, N,
2 N, | Ny Ny N,.
a Nal Na2 o Nab Na+
Totals {f N, | N, | --- | N, n

For categorical variables, agreement of a single variable with a partition is expressed
by a contingency table in which one margin is the variable and the other margin is the
partition. The partition is nothing but a category variable itself which is an
amalgamation of all the category variables in the data, a category version of the first
principal component for continuous variables. Between two partitions, the above
measures of agreement are undesirable.

There are many kinds of measures of association between categorical variables.
Traditional measure of association is the chi-square statistic

n(ZZN L @

Another measures of association for the table 2 suggested by Goodman and
Kruskal(1979) include

b= (N =N N,0) )
and

lla = (Z ij '—Nm.;.)/(l Nm+)’ (6)
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where

N,, —maxN N,

+j° m+’

maxN +» Ny =maxN;, N, =maxN, @)

1<j<n Isisn ¥

But these measure of associations can't directly be used as a similarity measure since
we are assuming the categories are ordered in some sense. So we consider another
measures of association which is appropriate for ordered categories. One possible
method suggested by Hartigan(1975) is to use

g=Z%,X,N,;logN,-Z,N, loghN, — Z,N logN, +nN, ®)

which is called information measure. This is just the log likelihood ratio of the general
multinomial hypothesis against the hypothesis of independence between variables. But
it is not proper for our cases. We consider another measure of association (G propsed by
Goodman and Kruskal(1972)

_P-F 2P -1+F
1-P 1-P ®)

where

2 2

B== X NALEN LB ==L, N{Z EN,,}

n i">ij'>j n i'>ij'<j

and
B =n"LE NN, +N, -N}=n?{I,N. +Z N -33 N}

It must be noted that G tells us how much more probable it is to get like than unhke
orders in two classifications.

[Remark] Some important properties of G is as follows. ( is indeterminate if all
count is entirely in a single row or column of the table. (G is 1 if all count is
concentrated in an upper left to lower right diagonal of the table. (; is —1 if all count is
concentrated in a lower left to upper right diagonal of the table. (; is 0 in the case of
independence, but the converse need not hold except in the 2 x 7 case.

[Lemma] For the efficient calculation of G for the table 2, let's assume the following
notations

Sy =ZZN:"1' +ZZNH' » D =ZZN"'J' +ZZN:"J"

i'>i j>j i'<i j'<j i'<i j'>j i>i j'<j
s d _ _ s _ d
B =NyxS;> Bl =N;xD;» =33 B > =3 3 F
i i J

Then G can be written as follows which is simple function of P and p,
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3. Numerical studies

223

(10)

As explained in section 1, after some similarity measures are chosen, for the clustering
of variable, we should consider the procedure for forming the clusters. In this paper, we
use the most popular one, agglomerative hierarchical method, simple linkage, complete
linkage and average linkage respectively. We didn't consider non hierarchical method,
for example, the ¢ means method because it is designed for the observation clustering
rather than variable clustering and the number of clusters are needed.

Table 3. Original data Table 4. Transformed data
obs[X, X, X, X, X, X, X, X, | [S[KVRyE LY,
1 11.06 92151544 1.6 9077 0.0 0.628 1 21212211
2 10.8910.320257.9 2.2 5088 25.3 1.555 2 21232212
3 114315411353.0 34 9212 0.0 1.058 3 34112212
4 [11.0211.216856.0 0.3 6423 34.3 0.700 4 22221121
51149 8.819251.2 1.0 3300 15.6 2.044 5 31311114
6 | 1.3213.511160.0-2211127 22.5 1.241 6 33121322
7 1122122175676 22 7642 0.0 1.652 7 23342213
8 | 1.10 9.224557.0 3313082 0.0 0.309 8 21422311
9 1134130168604 72 8406 0.0 0.862 9 33234212
10 { 1.1212.419753.0 2.7 6455 39.2 0.623 0123312131}
11 ]10.75 7.517351.5 6‘5,17441 0.0 0.768 11 11313411
12 [ 1.1310.917862.0 3.7 6154 0.0 1.897 1212233211 4
131 1.1512.719953.7 6.4 7179 502 0.527 13123313231
14 1 1.0912.0 96498 1.4 9673 0.0 0.588 14 22112211
151096 7.6164622-0.1 6468 0.9 1.400 15 11231113
16 [ 1.16 9.925256.0 9215991 0.0 0.620 16 1 2142 4411
17 10.76 64136619 9.0 5714 8.3 1.920 17 11234114
18 | 1.0512.6 150 56.7 2.710140 0.0 1.108 18123222312
19 [ 1.16 11.7 104 54.0 -2.1 13507 0.0 0.636 9122111411
2011.2011.814859.9 3.5 7287 41.1 0.702 20022222231
21 ] 1.04 8.620461.0 3.5 6650 0.0 2.116 21 21332214
221 1.07 93174543 5.9 10093 26.6 1.306 22 (21313323

We considered the public utility company data as an numerical example. The data are
found in Johnson and Wichern (1992, p593). It consists of 22 observations and 8
variables and appeared in table 3. Variable X, through x represents fixed charge
coverage ratio, rate of return on capital, cost per KW capacity in place, annual load
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factor, peak KWH demand growth, sales, percent nuclear and total fuel costs
respectively.

For the categorical variable clustering of these continuous data, we transformed the
data appropriately. For the transformation, we considered a standard deviation of each
variable in order to get reasonable the category number. We redefined the 8 variable as

Y, =12 ifl<X, <125 h={7 | 2 =
3 ifX, >125 if12 <X, <14
] 4 ifX,>14
(1 ifX, <130 (1 ifX,<10
y )2 if130< X, <170 y ]2 if10<x, <12
3713 if170< X, <210 253 if12< X, <14
4 ifx;>210 4 ifx,>14
(1 ifXx, <t (1 if X, <6500
s ]2 if1< X <4 y |2 if 6500< X, <10000
5513 ifd<X, <7 ©=13 if 10000 < X, <13500
4 ifX,>7 4 if X, >13500
1 ifX, <18 ; 3%8850; 13
K=12 if18<X,<36 and p=if 0SS El
3 lx s if13<X, <18
’ 4 ifX,>18

Based on these transformations, we can get categorized data and the results are
represented in table 4. For the data in table 3, the inputs for variable cluster analysis was
correlation matrix and this is represented as follows.

[ 1.000 ]
643 1.000

-.103 -.348 1.000

-.082 -.08 .100 1.000

-.259 -260 425 034 1.000

-152 -.010 .028 -288 .176 1.000
045 211 115 -164 -.019 —-374 1.000

| —013 —328 005 .486 -.007 -561 -.185 1.000]

Proposed measures of association were adapted to the data in table 4 and calculated
values of G for each pairs of variables are represented in the following matrix . It
should be noted that the value of G between variable 7 and 8 equals to 0 while the
correlation between variable 7 and 8 are —.185. The other values of S are similar to
those of. g. All computation including correlation and measures of association matrix
R was carried out on workstation based on FORTRAN programs.

Figure 1 represents dendrogram of the original data where complete linkage is used
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and the inputs for clustering is correlation matrix . Figure 2 represent the dendrogram
where the only different thing from figure 1 is input data of similarity matrix § of
categorized data.

" 1.000

674 1.000

—.083 -.139 1.000

-126 .044 -.136 1.000

-152 —-.041 .050 .049 1.000

096 -.003 -.127 -221 .126 1.000

.000 165 -.138 -.016 —.034 —~.093 1.000
~.038 -.063 .011 .376 -.027 ~.213 .000 1.000]

All of the results of cluster analysis is based on the IMSL subroutines, clink, pgopt
and treep which works on workstation. The two plots show similar forms in cluster.
Variable 1 and 2, variable 4 and 8 cluster at intermediate similarity levels. The final
merger brings together the (12478) group and (356) group in both dendrograms.
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Figure 1. Dendrogram of Figure 2. Dendrogram of

complete linkage complete linkage

Figure 3 and figure 4 represent dendrograms of the variable cluster. Simple linkage
method is used in figure 3 while average linkage method is applied to figure 4. These
are based on proposed measures of similarity matrix R. In this example, simple linkage
brings the final two clusters (12357) and (468) while average linkage brings the two
cluster (125) and (34678). These results are some what surprise. When correlations are
used as similarity measures, variables with large negative correlations are regared as
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very dissimilar variabls with large positive correlations are regarded as very similar. In
this case, the distance between cluster is measured as the smallest between members of
the corresponding clusters. Complete linkage method looks appropriate for the
considered example.
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Figure 3. Dendrogram of Figure 4. Dendrogram of
simple linkage average linkage
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