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Discount Survival Models
Joo Y. Shim and Joong K. Sohn

Abstract The discount survival model is proposed for the application of the Cox model on
the analysis of survival data with time-varying effects of covariates. Algorithms for the
recursive estimation of the parameter vector and the retrospective estimation of the survival
function are suggested. Also the algorithm of forecasting of the survival function of
individuals of specific covariates in the next time interval based on the information
gathered until the end of a certain time interval is suggested.

Keywords : Discount Model, Cox Model, Survival Data, Covariate, Recursive Estimation,
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1. Introduction

Cox(1972) proposed the regression model for the analysis of survival data by
introducing a parameter vector modeling effects of covariates in the model under the
assumption that covariates have fixed effects on the survival pattern. West et al.(1985)
developed the dynamic generalized linear model, where the distribution of a time-
varying parameter is partially specified by its mean and variance-covariance matrix.
Ameen and Harrison(1985) developed the normal discount Bayesian model to overcome
some practical disadvantages of the dynamic linear model. They introduced the use.of a
discount factor d (0<d<1I) so that the variance of a parameter of the current time is
equal to the variance of a parameter of the previous time divided by a discount factor,
which implies an increase in variance of 100(1-d)/d percent. Gamerman(1991) proposed
the dynamic Bayesian model for the analysis of survival data with a time-varying
parameter vector. It is assumed that the time-variation of the parameter vector is
determined through the evolution of the parameter vector between time intervals.

The discount survival model is proposed by incorporating the Cox model into the
dynamic generalized linear model and the discount Bayesian model. This mode.
provides a quick response to sudden changes of the time-varying parameter vector,
which leads a faithful representation of survival data via survival functions.

The discount survival model is described in Section 2. The procedure of recursive
estimations of the parameter vector under the multiprocess dynamic model is providec
in Section 3. Also the procedure of retrospective estimations of the survival functior.
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and the procedure of one-step ahead forecasting of survival functions in the next time
interval are provided in Section 4 and Section 5, respectively. In Section 6 the
performance of the proposed model is illustrated via the real data.

2. Model Description

Here we assume that the survival time has a piecewise exponential distribution which
has a constant hazard rate in each time interval,

Mr)=4, for tel, =(r,,,7 ,]

where 1, is usually setto 0and ] = ( Tes ) The survival function and the probability
functlon for the current time 1nterval I. given survival up to the end of the previous time
interval can be easily calculated due to the lack of memory property of exponential
distributions. Thus we obtain the likelihood for A, under the assumption that the
random censoring time has no relation with the survival time,

WAj0) = A exp(-A,(t - 1,,)) for 1 el

where § is the indicator function of a death of the individual in the time interval | . We
denote the hazard rate corresponding to the j-tk individual alive at the beginning of time
interval L by N> 3= 1o where n, is the number of individuals used to be alive at
the begmmng of tixe time mterval L. Let T be a survival time of the j-th individual used
to be alive at the beginning of the time interval I.- Also let 1, be an observed failure
time corresponding to T which can be mterpreted as the minimum of survival time of
the j-th individual and correspondmg censoring time. We define the information about
the j-th individual as the information of the survival time of the j-th individual alive at
the beginning of time interval I,» which is obtained at time £y consisting of following 3
events;

i) the j-th individual dies at 1,

i) the j-th individual is censored at t

ii1) the j-tA individual is alive at ;=7 SO that T > In first two cases provide no

further information of the survival time of the j- _th individual.

Let D, be a set of informations from all observations of time intervals, 1,1, and let
Dy, be a set containing D, and informations from first j observatlons "of time
mterval 1. so that D, ) = D; and D. =D, . Then the discount survival model in
the time interval I is defined by :
i) observation equatlon ;

i-l(n_i)

7; ~exp(ki(j):l,‘) for j=1,~-,ni,i=1,---,s,

i1) guide relationship;
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ﬂ’i(j) = exp(Z!'[ ﬂl) for J = 19"'9n,‘:i = 19"':sa
iii) evolution equation;
E(ﬂnl Di—l) = E(ﬂi-l' D))
V(ﬂilDi-l)= BiV(ﬂi-llDi—l)Bi’ fori=1,---,s

where B, is a diagonal matrix of discount factors in the time interval | -

3. Recursive Estimation of a Parameter Vector

The process is started with the initial distribution of g, specified by mean vector B
and variance-covariance matrix Vv, where ;3 and vV, are given prior to the time 1nterval
I which do not affect distributional behav1ors of the parameter vector in future time
1nterva]s for a certain extent of time elapsing.

At the beginning of each time interval I, the posterior distribution of B.., obtained in
time interval I, leads the prior distribution of B,

(B:ID;)~[a;,R;]
where
a; = ﬁi—l and R; =B;V,_,B;.

With informations from first (j-1) observations, the joint prior distribution of B, and
log x 1s obtained by the guide relationship,

ey (& 31 :
10gli0)| i-1G-1) | fij > S'ij a; ()

f—Za

where

ij? ij

S; =R;Z; and q; = Z Sii»

with a,=a and R,=R. Here the prior distribution of ) . is assumed to be a
conjugate gamma dlStI‘lbuthl’l (b r, ) where bJ and r, are estjlmated in terms of the
mean and the variance of the dxstrlbutlon of log?» » such as, respectively, qij‘ and
q; 'exp(~f;)-
Wlth information from the j-th observation the posterior distribution of Ay is
obtained as

(M| Dy ) ~Ga(by; +8; , 1 + ti—t) 3.2)

Using (3.2) and applying the linear Bayes estimation on (3.1) the updated distribution of
B, given DHU) is estimated as
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(Bi |Di-1(j)) ~ [Bij’vij]
where

1+4,9 j
1+ qij(tij —Tia )exp(fij) ’

B, =a;+ Syq,;llog(

A8
V, =R, +S,.J.S,.J.( y ]
1+q,.j

Since there is no parametric evolution in each time interval, the joint prior distribution
of B, and log )\'i(jﬂ) 1s given as

( B 1D )N (ai,jﬂj (Ri,jﬂ Si,j+1)
IOgii(jm i fi,j+1 ’ Si,j+l qdin

where
A = Bij’ fi,jﬂ =Z'l’.j+l 3 vt
Rim= Yij’ S =R 12 5,
Qi = Zi,j+ISi,j+l'

Thus, when all individuals in time interval 1, are observed, the posterior distribution
of B, is estimated as

(BiiDi)~[Bi’Vi]
where
D= Di-l(ni)’ B, = Bini , and V= Vi, -

4. Estimation of the Survival Function

In this section, under the assumption of the conjugate gamma distribution of the
corresponding hazard rate, the estimated survival function of individuals of a covariate
vector 7 is obtained with informations gathered until the end of time interval I

Using smoothed distribution of g given D, the distribution of the corresponding
hazard rate given D, is obtained by the guide relationship, which leads to the

estimation of the survival function. Through the evolution equation, the joint
distribution of B and B.., given D, is obtained as

(ﬂi lDi) N li[ﬂ, )’ (V: v )} 4.1
B a0 Vi Ry,

Using the distribution of Bi. given D, and applying the linear Bayes estimation on
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(4.1), the smoothed distribution of B, given D, is estimated as

(BiIDw)~[Bin > Vinls (4.2)

where

B —ﬁ +V G;+1R1+I (ﬁH»]N al+1)
Vixn =V, =V, R, (R, V).

Applying the guide relationship on (4.2) estimates of the defining parameters of the
assumed distribution of My Ga(b ,1,) are obtained as, respectively, (z. v, WZ,)" and

exp(=Z', B ) (Z, VinZ,) ™
By integration

i+1 1+I

_bi
P(Th >t|Th>Ti_1,DN)=(1+t—Ti—1) '
4

i

Thus, at the end of time interval I, by Bayes rule, the survival function for individuals
of the covariate vector Z is obtained as

b o ~be
[- Ti—l) (1+ Ty — Tk—l)
F; k=1 "

5. Forecasting of the Survival Function

P(T, >tlDN)=(1+

In this section, the one-step ahead forecasted survival function of individuals of the
specific covariate vector z, used to be alive at the end of time nterval, I is estimated
based on informations gathered until the end of interval L.

At the end of a specific time interval I., through which individuals of the covariate
vector Z has been observed alive, the posterlor distribution of B, which is equivalent to
the distribution of B, given 1 » 1, and D, 1s estimated as

(BT, >7.D)~|B,. V. |

By the evolution equation and the guide relationship, the joint prior distribution of B...
and Jog A, is obtained as

1(h)
ﬂi+l J (a'+l) (R 1 S 1)
T,>7,,D, | ~ S S I I (5.1
(IOg /1i+](h)| ’ Sin S:(fll ) qin

f.

i+l

where
=Z\a,, S, =R,Z, and q,, = z, it

Here the prior distribution of Xy is assumed to be a conjugate gamma distribution



232 Joo Y. Shim and Joong K. Sohn

)T ) Note that b,, and r,, are estimated to be expressed in the mean and the
such as, respectively, ., -1 and Q. exp( £,)-

(b,
vanfance of the dlstrlbutlon of | 10g A,

i+1(h)
By integration, for ¢ eI,

_bi+l
P(T, > 1T, > r,.,D,.)=(1+ ’*"')
y i+l
Thus, the survival function of individuals of the covariate vector Z in the time interval
L, 1s forecasted based on D, by Bayes rule as follows

P(T, >1D;) =P(7, > 1|T, >1,,D)P(T, > 1;|D,), for t €l ,i=1, 51

6. Illustrations

In this section, the performance of the Bayesian estimations proposed in previous
sections is illustrated, via the data in Table 1 which consist of survival times of 90
gastric carcinoma patients equally divided into two groups with respect to the type of
treatments - the chemotherapy and the combination of chemotherapy and radiation
therapy.

Table 1. Survival Times in days

Chemotherapy 1,63,105,129,182,216,250,262,301,301,342,354,356,
358,380,381c,383,383,388,394,408,460,489,499,524,
529¢,535,562,675,676,748,748,778,786,797,945¢,955
,968,1180c,1245, 1271,1277¢,1397¢,1512¢,1519¢
Chemotherapy and Radiation 17,42,44,48,60,72,74,95,103,108,122,144,
167,170,183,185,193,195,197,208,234,235, .
254,307,315,401,445,464,484,528,542,567,
577,580,795,855,882¢,892¢,1031¢,1033c,
1306¢,1335,1366,1452¢, 1472¢

¢ : censored , source : Stablein et al.(1981)

In the discount survival model the survival time of the the j-th individual alive at the
beginning of time interval I, assumed to have the exponential distribution with hazard
rate,

;{'i(j) = exP(Zy B)
with z',=(,z) and B, =By »By)"> where z; = = for the chemotherapy and z, = for the
combined therapy of the j-th individual alive at the beginning of time interval I.. Each
end point of time intervals is taken as the multiple of 30 days. We start the analy51s with
the initial distribution of (ByIDy) ~ EO 10°1 J reflecting lack of informations at time ;- g.
Also with discount factors 1 and 0. 75 for variances corresponding to B, and B,
respectively, so that
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2~y )

Figure 1 shows the considerable time variation of the mean of the parameter By
modeling the difference of the treatment effect. It changes from a positive contribution
to the hazard rate in the early time to a negative contribution as time elapses and stays
near zero. Figure 2 shows estimated survival functions of two treatment groups under
the discount survival model. One can see that at nearly 1100 days two functions
intersect, which does not agrees with estimates of survival functions under the Cox
model but PL-estimates. Figure 3 shows one-step ahead forecasted survival functions
under the discount survival model.

_2.5 i 1 L
B 589 1069 158p

days
salid=an-line, dotted=smoothed
Figure 1. Estimated Mean of Parameter of Effect of Treatment Difference

prabability

5] 209 1069 1500

days
. . Salid=chematheraqhy, dotted=combined
Figure 2. Estimated Survival Functions of Two Treatment Groups
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Figure 3. One-Step Ahead Forecasted Survival Functions under DSM
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