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The Counting Processes
that the Number of Events in [0, t]
has Generalized Poisson Distribution

Jeong Hyun Park

Abstract It is derived that the conditions of counting process {N(:)z = 0} in which the
number of events in time interval [0, ] has a (n, n+1)-generalized Poisson distribution
with parameters (&.1) and a generalized inflated Poisson distribution with parameters
(A, @) .
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1. Introduction

Rao and Rubin (1964) introduced a generalized Poisson distribution with two
parameters. This distribution has been attempted to take into account errors in recording
a variable which in reality does have a Poisson distribution. Definitions of generalized
Poisson distribution is the following:

Definition (Rao and Rubin) The discrete random variable X is said to be a generalized
Poisson with parameters (6, A) if

i) PIX =0} = e (1 + OA).
i) P{X =1} = G °(1 - A).

n

o
ili) P{X =n} =—e®, forn=234,.
n!

The generalized Poisson distribution is a Poisson distribution when 4 = 0.

Cohen (1960a) introduced another generalized Poisson distribution which arises in a
model representing a situation in which (with probability 1) a value (n+1) is classified
as n. For convenience, this generalized Poisson distribution is called a (n,n+1)-
generalized Poisson. The definition of a (n,n+1)-generalized Poisson is the following

Definition (Cohen) The discrete random variable X is said to be a (n,n+1)-generalized
Poisson with parameters (6, 1) if
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| Q

i) P{X = k}—e ) (k=0]12,,n-Ln+2,n+3,)

){ (n+ l)}

e o™ )
i) P{IX=n+1}=e¢ ((n+1)! 1-2).

The generalized Poisson distribution defined by Rao and Rubin is (0,1)-generalized
Poisson distribution and (n,n+1)-generalized Poisson distribution is Poisson distribution
when A = 0. Park (1995) introduced conditions that the number of events in time
interval [0,7] has (0,1)-generalized Poisson distribution with parameters (&, 1).

Singh (1966) introduced a generalized inflated Poisson distribution. Other names for
this distribution are ‘pseudo-contagious' (Cohen, 1960b) and modified Poisson. The
definition is the following;

QY >

i) P{iX=n} =¢ (

Definition (Singh) The discrete random variable X is said to be a generalized inflated
Poisson with parameters (4, ®) if

) PAX =0} =0+ (1 -aw)™”

i) P{X =k} =(1- co)e‘*(%] (k > 1.
2. Méin results

The theorem for the conditions that the number of events in interval [O f] is a
(m,n+1)-generalized Poisson distribution is developed as following:

Theorem 1 If the counting process {N(¢)|¢ > 0} is satisfying

L. N(0) =0
2.P{NG+h) - N@) = N(t) =k} = +o(h) (k=01-,n—Ln+2, )
_ o {n+ 1DoAh
3. P{N(t + h) = N(t) = | N(t) = n} = 6h o+ o®

o
4. PINC+m) - N@) =1IN@t) =n+1} = L

5. P{Nt+h) -~ N@)Z2INW)=y}=0h) (y=012,--).
then the number of events in interval [0,¢] is a (n,n+1)-generalized Poisson distribution
with parameters (&, 4).

Proof Let P (t) = P{N(t) = k}. Suppose k < n — 1, then the differential equation
for P,(t) is derived as following manner:
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P(t+h)=P{N@t+h) =k}
= P{N(@t) = k}P{N(t+h)- N@t) = O|N(@) = k}
+ PINt) =k -1 P{INt+h) - N@® =IN@®) =k-1}
+ Zk:P{N(t) =k -i{}P{N(t+h) - N@t) =ilN@t) =k -}
= P,(_(t){l —6h + o(h)} + P,_,(1){Oh + o(h)} + o(h).
Hence,

P +hz - P() =-6P.(t)+ 6P._,(1) +9‘(hﬁl.

Letting h — 0 yields .

Bi(t) = =6P. (1) + 6P, (1) (1)
When 4=0, the differential equation provides

Py(t) = ~6R(1).
The solution of the above differential equation is P,(¢#) = Cye™® and the condition
F,(0) = 1 implies that C, = 1. Thus
P(t)=e"* (2)
When =1, the differential equation (1) together with the result (2) provides
P(t) = —6P(t) + 6e™®.

whose general solution is P,(r) = e™® + C,e™®. the boundary condition PO)=0
makes C, = 0. Thus '

P(t) = Ge™?.

Now, by taking k£ = 2,3,---,n — 1 it can be shown by same method that the solution ta
these differential equation in (1) with the boundary conditions P,(k) =0 for
k=23,---,n-1 are

_a ()"

By =e" =

k=23,--,n—1

Suppose k=n,
P(t+h)=P{N(t+h)=n}
= P{N(@) =n}P{N@t +h)—- N@t) = 0N@) = n}
+PINt)=n-1}P{N¢t+h) - N@®)=1IN@)=n-1}
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+ Z P{N(t) = n— i}P{N(t + k) = N(t) = i| N(t) = n — i}

1
o+ (n+ 1D)0Ah

= ROl - +1+0u

Hence,

P+R) =B (n + )64
h “(—04-n+1+Hlt)R'(t)+QR'“(t)+

Letting % — 0 yields

oy (n+1)6A
Pl(t) = (— g+ ———-——1 " QM)P () + 6P,_ (D).

From the differential equation (3),

G N Co U [ G
P(W)=e Z fe(n_l)' dt
o,

n

=e?(n+1+60iH"!

n-1 (n+1)
I D’jr (n+1+64) " Vdt

+C,e™ (n+1+ 0™
Since
0”
(n+ 1!

[+ 1+ 6an) "V ar

n-1 n-2 )
= - (a?l (n+1+064r)~" - ( ')/lz (n+1+ 6"
n:

1
wl(n+1+6W)

n (a)n—i
lﬂ’

(n+1+81)""

then

P(t) = - '“Z( ) (n +1+64) +Ce¥(n+1+ 64",

i
By boundary condition P,(0) = 0,

+o(h)} + P,_ (){6h + o(h)} + o(h).

o)
P

(3)
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1
G = (n+ D) A"

o"t" A6
P()=e"? 1 .
A1) = (n! j{ +(n+1)}
Next, suppose k=n+1,

P.,(t+h)=P{Nt+hy=n+1}
=P{Nt) =n+BP{Nt+h)-Nt)=0NUt) =n+1}
+ P{N(t) = n}P{N(t + h) — N(t) = | N(t) = n}

n+l

+ D PN(t)=n+1-iP{N@{t +h) = N(t) =i N(t) = n+1- i}
i=2

fhﬂ + o(h)} + Pn(t){é?h - ’—Efﬂ} + o(h).

Thus

=P -
(DU 1 +1+ 61t
From
a't" A6t
H=e"? 1
Fy=e ( n! J{ +(n+1)}
()= ¢ i a [ " Ao ((n+1)49(1 /1)+ouz) =
Fon n! (n+1)! n+1+ 60t
a
+C,, e -2
_ (et)nﬂ _ _%
= a0+ Gl
By boundary condition P,,,(0) = 0,C,,, = 0,thus
Py = g
n+l ( 1)'
Suppose k=n+2,

P ,(t+h)=P{Nt+h)=n+2}
= F,(O{1 - &+ o(h)} + P“(t)( ,u) + o(h)

and
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n+l

-a [0(O) _
Bra® = € [Tt + G
By boundary condition P+2(O) = 0,weobtain C, , = 0. Thus
) (et)n+2
P.,(t)=e¥ ~~>—.
n+2( ) e (n + 2)'

Now, by taking k=n+3,n+4,-- it can be shown by mathematical induction that the
solution to equation (1) with boundary conditions 2, (0) = 0 for k=n+3,n+4,- are

@

B =" T,

k=n+3n+4,-

Hence the number of events in interval [0,f] has a (nn+1)-generalized Poisson
distribution with parameters (&, 1).

Next, we find conditions that the number of events in interval [0,¢] is generalized
inflated Poisson distribution.
Theorem 2 If the counting process {N(¢)[t = 0} is satisfied with
L. NO)=0
Ao
- we ™
3PNt +h)-N@)=U§N@)=n=Ah+oh) n2=1
4. PINt+h) - N@)22IN@#) =y} =0oh) (=012,

2. P{N(t + h) = N(t) = 1|N(t) = 0} =(/1— )h+o(h)
: w + (1

then the number of events in interval [0,t] is'a generalized inflated Poisson distribution
with parameter (Af, ).
Proof Let P, (r) = P{N(t) = n}. The differential equation for P,(¢) is derived as
following manner:
B (t+h)y=P{N(t+h)=0}
P{N(@) =0}P{N(t +h)— N(t) = O|N(t) = 0}
Aoh

P,(t){1 - Ah + pT——T + o(h)}.

Hence,

&a+m—&m=_(uhwk*) P+ dm

h o+ (1-w)e™”

Letting 7 — 0 yields
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AQ - w)e™*
o+ (- w)e’”)PO(t)'

() = —(

which implies, by integration,
F(1) = Cofo + (1 - w)e™}.
Since £ (0) = P{N(0) = 0} = 1, we obtain that C, = 1. Thus
P(t)=o+(1-we™.
When /=1, P, (t) = P{N(t) = 1}.
P(+h)y=P{Nt+h=1
= P{N(t) = }P{N(t + h) - N(t) = O|N(¢) = 1}
+ P{N(t) = O}P{N(t + h) - N(t) = | N(t) = 0}

= P(t){l - Ak + o(h)} + Po(t)(/lh -— (ff"; = o(h)).
hence,
AU =B __p iy s it - wye + 2B
h h
On taking the limit as 4 — 0, we get the differential equation
P(t) + AP (1) = A(1 - w)e™™. (4>
The solution of the differential equation (4) is '
P(t)=(1-o)lte™” + Cee™.
and the condition P,(0) = 0 implies that C, = 0. Thus
Pt) = (1 - w)lte™. (5)

Let £ > 2,
P(t+h)=P{N(t+h)=k}
= P{N(#) = k}P{N(t + h) - N(t) = O|N(¢) = k}
+P{N(U)=k-BP{Nt+h) - N@t)=1N@Gt) =k - 1}
+ ZP{N(t) =k-}PINt+h -N@®=ilNO =k -1}
i=2
= (1= AW P.(t) + ARP,_, (1) + o(h).
Thus,



280 Jeong Hyun Park

P.(t+h)~ Pt h
D=0 - an 0+ an 0 + 22,

h
On taking the limit as 4 — 0, we get the differential equation
P(t) + AP (1) = AP, (1) (6)

When k=2, the difference differential equation (6) with the result (5) provides
P/(t) + AP, (1) = (1 - w)Ate™,

The solution of the above differential equation is

M 2
P(H=(- a))( 2) e ¥ + Ce .
and the condition P, (0) = 0 implies that C, = 0. Thus
At 2
P(t) = (I—a))( ) e,

2

Now, by taking k=3,4,-- it can be shown by mathematical induction that the solution to
the equation (6) with boundary conditions P, (0) = 0 for k=3,4,-- are
k
g
k!

Hence, the number of events in interval [0,f] has a generalized inflated Poisson
distribution with parameters (A, ).

P(H) =(1- )

k=34,
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