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A STRONG UNIFORM BOUNDEDNESS
RESULT ON κ-SPACES

Min-Hyung Cho

Abstract. A strong Banach-Mackey property is established for κ-

spaces including all complete and some non-complete metric linear

spaces and some non-metrizable locally convex spaces. As applica-
tions of this result, a strong uniform boundedness result and a new

Banach-Steinhaus type theorem are obtained.

A topological vector space X is said to be a κ-space if every null
sequence {xn} in X has a subsequence {xnk

} such that the series∑∞
k=1 xnk

converges in X ([1], [2]). κ-spaces make a large class con-
taining complete metric linear spaces, some non-complete metric lin-
ear spaces and some non-metrizable locally convex spaces. Recently,
κ-spaces have been shown to enjoy many nice properties ([1],[2],[3],[4]).
In this paper, we would like to establish a strong Banach-Mackey prop-
erty for κ-spaces and derive from this several important results includ-
ing a strong uniform boundedness principle and a Banach-Steinhaus
type theorem.

For the remainder of this note, (X, τ) represents a topological vector
space with the vector space X and the vector topology τ on X. Some-
times, we use only X instead of (X, τ). For a topological vector space
X let X ′, Xs and Xb denote the families of continuous, sequentially
continuous and bounded linear functionals on X, respectively ([5]).
Similarly, for topological vector spaces X and Y let L(X, Y ), SC(X, Y )
and B(X, Y ) denote the families of continuous, sequentially continuous
and bounded linear operators from X into Y , respectively. It is easy
to see that X ′ ⊆ Xs ⊆ Xb and L(X, Y ) ⊆ SC(X, Y ) ⊆ B(X, Y ) but,
in general, they are different.
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If E is a vector space and F is a vector space of linear functionals
on E, then we have a dual pair (E,F ). Let σ(E,F ), τ(E,F ) and
β(E,F ) denote the weak topology, the Mackey topology and the strong
topology for E, respectively ([5]). A locally convex space X is said to be
a Banach-Mackey space if each bounded set in X is strongly bounded,
i.e., β(X, X ′)-bounded ([5]). A dual pair (E,F ) is called a Banach-
Mackey pair if each σ(E,F )-bounded subset of E is β(E,F )-bounded.
It is easy to see that a dual pair (E,F ) is Banach-Mackey if and only
if E with every (E,F )-compatible topology is a Banach-Mackey space
and, hence, a locally convex space X is Banach-Mackey if and only if
(X, X ′) is a Banach-Mackey pair.

Since X ′ ⊆ Xb for every locally convex space X, if the dual pair
(X, Xb) is Banach-Mackey, then (X, X ′) must be Banach-Mackey, i.e.,
X must be a Banach-Mackey space. Moreover, if (X, Xb) is Banach-
Mackey, then X has the following more strong property.

Proposition 1. Let X be a locally convex space. If (X, Xb) is
a Banach-Mackey pair, then for every (X, X ′)-admissible topology τ ,
(X, τ) is a Banach-Mackey space.

Proof. It is enough to show that (X, β(X, X ′)) is Banach-Mackey.
As was stated above, (X, X ′) is Banach-Mackey by the assumption
and, hence, σ(X, X ′)-boundedness = β(X, X ′)-boundedness. Let f
be a continuous linear functional on (X, β(X, X ′)). Then f sends
bounded sets in (X, β(X, X ′)) to bounded sets in C and, hence, f ∈ Xb

because X with its original topology has the same bounded sets as
(X, β(X, X ′)). Now (X, (X, β(X, X ′))′) must be Banach-Mackey be-
cause (X, Xb) is Banach-Mackey. � �

Theorem 2. If a locally convex space X is a κ-space, then (X, Xb)
is a Banach-Mackey pair.

Proof. Let A ⊆ X be σ(X, Xb)-bounded and B ⊆ Xb be σ(Xb, X)-
bounded. Suppose that {f(x) : f ∈ B, x ∈ A} is not bounded. Then
there exist sequences {xj} ⊆ A and {fj} ⊆ B such that |fj(xj)| > j2

for all j.
Consider the matrix [i−1fi(j−1xj)]i,j . For a fixed j, limii

−1fi(j−1xj)
= 0 because {fi} ⊆ B and B is σ(Xb, X)-bounded. Since σ(X, Xb)-
boundedness = σ(X, X ′)-boundedness, A is bounded in X by the
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Mackey theorem so j−1xj → 0 in X. Let {jk} be an increasing se-
quence in N. Then {jk} has a subsequence {jkl

} such that the series∑∞
l=1 j−1

kl
xjkl

converges in X because X is a κ-space. Now observe
that Xb = Xs ([4], Theorem 2) and, hence, each fi is sequentially con-
tinuous on X,

∑∞
l=1fi(j−1

kl
xjkl

) = fi(
∑∞

l=1 jkl

−1xjkl
) for each i. Thus,

limi

∑∞
l=1 i−1fi(j−1

kl
xjkl

) = limii
−1fi(

∑∞
i=1 j−1

kl
xjkl

) = 0. Now by a
matrix theorem, j−1fj(j−1xj) → 0 ([3], Theorem 1). This contradicts
that |fj(xj)| > j2 for all j. Therefore, {f(x) : f ∈ B, x ∈ A} is
bounded. � �

Corollary 3. If X is a locally convex κ-space, then X with the
strong topology β(X, X ′) is Banach-Mackey.

Corollary 4. If X is a locally convex κ-space, then every contin-
uous linear functional on (X, β(X, X ′)) is sequentially continuous on
X.

Proof. As was stated in the proof of Proposition 1, every continu-
ous linear functional on (X, β(X, X ′)) belongs to Xb. But Xb = Xs

because X is a κ-space ([4], Theorem 2). � �

For a locally convex space (X, τ) let τ b denote the strongest locally
convex topology on X which has the same boundedness as τ . (X, τ b)
is bornological and τ b = τ(X, Xb), the Mackey topology in the pair
(X, Xb)([5],[6]).

Corollary 5. If (X, τ) is a locally convex κ-space, then (X, τ b) is
barrelled.

Proof. (X, τ b) is bornological and, hence, quasibarrelled ([5], 10-1-
10). Since τ b = τ(X, Xb), (X, τ b) is Banach-Mackey by Theorem 2.
Thus, (X, τ b) must be barrelled ([5], 10-4-12). � �

A recent result says that (Xs, σ(Xs, X)) is sequentially complete if
X is a κ-space ([4], Theorem 22). We improve this result as follows.

Corollary 6. If X is a locally convex κ-space, then (Xs, σ(Xs, X))
is boundedly complete and, hence, sequentially complete, semireflexive
and X has the convex compactness property.
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Proof. Observing Xs = Xb and τ b = τ(X, Xb) = τ(X, Xs) and,
therefore, Xs = (X, τ b)′, (Xs, σ(Xs, X)) must be boundedly complete
by above Corollary 5 and Theorem 9-3-13 of [5]. � �

There is a nice uniform boundedness result holds for sequentially
complete locally convex spaces ([3], Corollary 4 and Proposition 5).
We show that the same result holds for locally convex κ-spaces.

Theorem 7. Let X be a locally convex κ-space and Y an arbi-
trary locally convex space. If a subfamily F of SC(X, Y ) is pointwise
bounded on X, then F is uniformly bounded on bounded subsets of
X.

Proof. Let y′ be a continuous linear functional on Y . It is easy to see
that {y′ ◦T : T ∈ F} ⊆ Xb and {y′ ◦T : T ∈ F} is σ(Xb, X)-bounded.
Now let A be a bounded subset of X. Then A is σ(X, Xb)-bounded.
By Theorem 2, the set {y′(T (x)) : T ∈ F, x ∈ A} is bounded in C, i.e.,
{T (x) : T ∈ F, x ∈ A} is σ(Y, Y ′)-bounded in Y and, hence, bounded
in Y by the Mackey theorem. This just shows that F is uniformly
bounded on bounded sets. � �

Note that above proof is available for the case of F ⊆ B(X, Y ), i.e.,
we can put B(X, Y ) instead of SC(X, Y ) in Theorem 7. But this is
just Theorem 7 itself because B(X, Y ) = SC(X, Y ) for κ-space X and
every locally convex space Y ([4], Corollary 17).

We know the discussions of Banach-Steinhaus type results for non-
barrelled spaces are complicated very much ([7],[8]). However, a clear-
cut Banach-Steinhaus type result holds for κ-spaces.

Theorem 8. Let X be a locally convex κ-space and Y an arbitrary
locally convex space. If {Tk} is a sequence of sequentially continuous
linear operators such that limkTkx = Tx exists in Y for each x ∈
X, then the limit operator T is also a sequentially continuous linear
operator.

Proof. Let A ⊆ X be bounded. Clearly, {Tk : k ∈ N} is pointwise
bounded on X. By Theorem 7, {Tkx : x ∈ A, k ∈ N} is bounded and,
hence, {Tkx : x ∈ A, k ∈ N} is bounded in Y . Therefore, {Tx : x ∈ A}
is bounded in Y . This shows that T ∈ B(X, Y ). But B(X, Y ) =
SC(X, Y ) ([4], Corollary 17) so T is sequentially continuous. � �
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As an immediate consequence of Theorem 8, we have the following
generalization of Theorem 22 of [4].

Corollary 9. If X is a κ-space and Y an arbitrary sequentially
complete locally convex space, then SC(X, Y ) is sequentially complete
with respect to the topology of pointwise convergence on X.

References

1. P. Antosik and C. Swartz, Matrix Methods in Analysis, Lecture Notes in Math.,

1113, Springer-Verlag, (1985).

2. Min-Hyung Cho, Rong-Lu Li and Cong Jin, A Basic Principle of Topological
Vector Space Theory, J. of Korean Math. Soc. 26 (2) (1989), 223-229.

3. Ronglu Li and C. Swartz, Spaces for which the uniform boundedness principle

holds, Studia Sci. Math. Hungarica 27 (1992), 379-384.
4. Li Ronglu, C. Swartz and Min-Hyung Cho, Basic Properties of κ-spaces, Sys-

tem Sci. and Math. Sci. 5 (1992), 233-238.

5. A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill (1978).
6. J.H. Webb, Sequential convergence in locally convex spaces, Proc. Cambridge

Phil. Soc., 64 (1968), 341-364.

7. R.E. Snipes, S-barrelled topological vector spaces, Canad. Math. Bull., 21 (2)
(1978), 221-227.

8. W.H. Hsiang, Banach-Steinhaus theorems of locally convex spaces based on
sequential equicontinuity and essentially uniform boundedness, Acta Sci. Math.,

52 (1988), 415-435.

Department of Applied Mathematics
Kum-Oh National University of Technology
Kumi 730-701, Korea

Department of Applied Mathematics
Kum-Oh National University of Technology
Kumi 730-701, Korea
E-mail : mignon@kumoh.kumoh.ac.kr


