Enhancement of Neural Death by Nerve Growth Factor

  • Chung, Jun-Mo (Department of Biology, College of Natural Sciences. Ewha Womans University) ;
  • Hong, Jin-Hee (Department of Biology, College of Natural Sciences. Ewha Womans University)
  • Received : 1995.12.15
  • Published : 1996.05.31

Abstract

Nerve growth factor (NGF) is literally known to promote neural differentiation and survival in several peripheral and central neurons. Thus, it is Widely believed that NGF may serve as a therapeutic agent for many types of neuronal diseases. One of the mechanisms suggested to explain the protective role of NGF is that the trophic factor can prevent the increase of intracellular calcium ions which might be responsible for neural death. To examine whether or not the calcium hypothesis works even under pathological conditions, we applied NGF to cultures deprived of glucose. Surprisingly, what was observed here is that NGF rather promoted cell death under a glucose-deprived condition. What we call the NGF paradox phenomenon occurred in a calcium concentration-dependent manner, indirectly suggesting that NGF might increase intracellular calcium ions in cells deprived of glucose. This suggestion is further supported by the fact that nifedipine, a well-known L-type calcium channel blocker, could block the cell death potentiated by NGF. Here it is still premature to propose the complete mechanism underlying the NGF paradox phenomenon. However, this study certainly indicates that NGF as a therapeutic agent for neuronal diseases should be carefully considered before use.

Keywords

References

  1. Cell v.65 Boulton, T.G.;Nye, S.H.;Robbins, D.J.;Ip, N.Y.;Radziejewska, E.;Morgenbesser, S.D.;DePinho, R.A.;Panayotatos, N.;Cobb, M.H.;Yancopoulos, G.D. https://doi.org/10.1016/0092-8674(91)90098-J
  2. Neuron v.7 Cheng, B.;Mattson, M.P. https://doi.org/10.1016/0896-6273(91)90347-3
  3. Brain Res. v.607 Cheng, B.;McMahon, D.G.;Mattson, M.P. https://doi.org/10.1016/0006-8993(93)91517-V
  4. Proc. Natl. Acad. Sci. USA v.82 Feinstein, S.C.;Dana, S.L.;McConlogue, L.;Shooter, E.M.;Coffino, P. https://doi.org/10.1073/pnas.82.17.5761
  5. Stroke v.21 Goldberg, M.P.;Choi, D.W.
  6. J. Neurosci. v.1 Hamburger, V.;Bruno-Bechtold, J.K.;Yip, J.W. https://doi.org/10.1523/JNEUROSCI.01-01-00060.1981
  7. J. Immuno. Method. v.119 Hansen, M.B.;Nielsen, S.E.;Berg, K. https://doi.org/10.1016/0022-1759(89)90397-9
  8. J. Neurosci. v.6 Hefti, F. https://doi.org/10.1523/JNEUROSCI.06-08-02155.1986
  9. Exp. Neurol. v.115 Johnson, E.M. Jr.;Koike, T.;Franklin, J.A. https://doi.org/10.1016/0014-4886(92)90242-I
  10. J. Biol. Chem. v.266 Kim, U.H.;Fink, D. Jr.;Kim, H.S.;Park, D.J.;Contreras, M.L.;Guroff, G.;Rhee, S.G.
  11. J. Neuosci. v.2 Kirschenbaum, R.B.;Greene, L.A. https://doi.org/10.1523/JNEUROSCI.02-10-01405.1982
  12. Science v.268 Koh, J.Y.;Gwag, B.J.;Lobner, D.;Choi, D.W. https://doi.org/10.1126/science.7725105
  13. J. Neurosci. Methods v.20 Koh, J.Y..;Choi, D.W. https://doi.org/10.1016/0165-0270(87)90041-0
  14. Proc. Natl. Acad. Sci. USA v.86 Koike, T.;Martin, D.P.;Johnson, E.M. Jr. https://doi.org/10.1073/pnas.86.16.6421
  15. Proc. Natl. Acad. Sci. USA v.80 Korshing, S.;Thoenen, H. https://doi.org/10.1073/pnas.80.11.3513
  16. Science v.235 Kromer, L.F. https://doi.org/10.1126/science.3798108
  17. Physiol. Rev. v.48 Levi-Montalcini, R.
  18. Science v.237 Levi-Montalcini, R. https://doi.org/10.1126/science.3306916
  19. J. Cell. Biol. v.106 Martin, D.P.;Schmidt, R.E.;DiStefano, P.S.;Lowy, O.H.;Carter, J.G.;Johnson, E.M. Jr. https://doi.org/10.1083/jcb.106.3.829
  20. Proc. Natl. Acad. Sci. USA v.85 Masiakowski, P.;Shooter, E.M. https://doi.org/10.1073/pnas.85.4.1277
  21. Brain Res. v.542 Mattson, M.P.;Rychlik, B.;You, J.S.;Sisken, J.E. https://doi.org/10.1016/0006-8993(91)91003-J
  22. Neuron v.6 Mattson, M.P.;Rychlik, B.;Chu, C.;Christakos, S. https://doi.org/10.1016/0896-6273(91)90120-O
  23. J. Neurochem. v.47 Morelli, A.;Grasso, M.;Calissano, P.
  24. J. Biol. Chem. v.266 Oshima, M.;Sithanandam, G.;Rapp, U.R.;Guroff, G.
  25. Cell v.70 Pelicci, G.;Lanfrancone, L.;Grignani, F.;MaGlade, J.;Cavallo, F.;Fomi, G.;Nicoletti, I.;Grignani, F.;Pawson, T.;Pelicci, P.G. https://doi.org/10.1016/0092-8674(92)90536-L
  26. Neuron v.7 Qui, M.S.;Green, S.H. https://doi.org/10.1016/0896-6273(91)90339-2
  27. Science v.248 Rich, K.M.;Hollowell, J.P. https://doi.org/10.1126/science.2356470
  28. Proc. Natl. Acad. Sci. USA v.81 Shelton, D.;Reichardt, L.F. https://doi.org/10.1073/pnas.81.24.7951
  29. J. Neurosci. v.11 Shigeno, T.;Mima, T.;Takakura, K.;Graham, D.I.;Kato, G.;Hashimoto, Y.;Furukawa, S. https://doi.org/10.1523/JNEUROSCI.11-09-02914.1991
  30. J. Biol. Chem. v.267 Soltoff, S.P.;Rabin, S.L.;Cantley, L.C.;Kaplan, D.R.
  31. Brain Res. v.341 Takahashi, M.;Tsukui, H.;Hatanaka, H. https://doi.org/10.1016/0006-8993(85)91079-0
  32. J. Cerebral Blood Flow Metab. v.13 Zhang, T.;Tatsuno, T.;Camey, J.;Mattson, M.P. https://doi.org/10.1038/jcbfm.1993.51