Stimulation of an Esterase Activity of Thrombin by Dequalinium and Its Relationship with Blood Coagulation

  • Paik, Seung-R. (Department of Biochemistry, College of Medicine, Inha University) ;
  • Kim, Do-Hyung (Department of Biochemistry, College of Medicine, Inha University) ;
  • Chang, Chung-Soon (Department of Biochemistry, College of Medicine, Inha University)
  • Received : 1996.01.18
  • Published : 1996.05.31

Abstract

Effects on thrombin by an amphipathic cation, dequalinium, which has been recognized as an anticarcinoma agent were investigated with small chromogenic substrates such as Na-benzoyl-DL-argininep-nitroanilide (BApNA), H-D-phenylalanyl-L-pipecoyl-L-arginine-p-nitroanilide (S-2238), and Na-p-tosyl-L-arginine methyl ester (TAME). Among them, only TAME hydrolysis due to an esterase activity of the enzyme was significantly activated to 81% at 20 ${\mu}M$ dequalinium in the absence of NaCl. This stimulation became even higher in the presence of 0.2 M NaCl to 3.5-fold at 60 ${\mu}M$ dequalinium. This specific activation of thrombin was well correlated with the results of in vitro coagulation tests measuring the activated partial thromboplastin time (APTT) and the prothrombin time (PT) It is pertinent. therefore, to suggest that the esterase activity should be examined in addition to the effects on 5-2238 hydrolysis when especially any regulators not directed to an active site of thrombin need to be studied. We also expect that dequalinium could be a useful tool for studying structure-function relationship of thrombin and blood coagulation.

Keywords

References

  1. J. Mol. Biol. v.235 Ayala, Y.;Cera, E.D. https://doi.org/10.1006/jmbi.1994.1024
  2. Biochemistry v.16 Berliner, L.J.;Shen, Y.Y.L. https://doi.org/10.1021/bi00640a015
  3. Biochem. Biophys. Res. Commun. v.135 Bodden, W.L.;Palayoor, S.T.;Hait, W.N. https://doi.org/10.1016/0006-291X(86)90032-X
  4. Biochem. J. v.93 Curragh, E.F.;Elmore, D.T. https://doi.org/10.1042/bj0930163
  5. Proc. Natl. Acad. Sci. USA v.92 Dang, Q.D.;Vindigni, A.;Cera, E.D. https://doi.org/10.1073/pnas.92.13.5977
  6. Biochemistry v.30 Davie, E.W.;Fujikawa, K.;Kisiel, W. https://doi.org/10.1021/bi00107a001
  7. J. Biol. Chem. v.265 Doyle, M.F.;Mann, K.G.
  8. J. Biol. Chem. v.264 Esmon, C.T.
  9. Proc. Natl. Acad. Sci. USA v.91 Gralnick, H.R.;Williams, S.;McKeown, L.P.;Hansmann, K.;Fenton, J.W. II;Krutzsch, H. https://doi.org/10.1073/pnas.91.14.6334
  10. Proc. Natl. Acad. Sci. USA v.85 Gurwitz, D.;Cunningham, D.D. https://doi.org/10.1073/pnas.85.10.3440
  11. Can. J. Biochem. Physiol. v.37 Hummel, B.C.W. https://doi.org/10.1139/y59-157
  12. Blood v.76 Mann, K.G.;Nesheim, M.E.;Church, W.R.;Haley, P.;Krishnaswamy, S.
  13. J. Biol. Chem. v.264 Maraganore, J.M.;Chao, B.;Joseph, M.L.;Jablonski, J.;Ramachandran, K.L.
  14. Thromb. Haemost. v.70 Obberghen-Schilling, E.V.;Pouyssegur, J.
  15. Biochemistry v.33 Paik, S.R.;Jault, J.M.;Allison, W.S. https://doi.org/10.1021/bi00167a016
  16. Cancer Res. v.50 Rotenberg, S.A.;Smiley, S.;Ueffing, M.;Krauss, R.S.;Chen, L.B.;Weinstein, I.B.
  17. Trends Biochem. Sci. v.20 Stubbs, M.T.;Bode, W. https://doi.org/10.1016/S0968-0004(00)88945-8
  18. Proc. Natl. Acad. Sci. USA v.84 Weiss, M.J.;Wong, J.R.;Ha, C.S.;Bleday, R.;Salem, R.R.;Steel, G.D. Jr.;Chen, L.B. https://doi.org/10.1073/pnas.84.15.5444
  19. Biochemistry v.31 Wells, C.M.;Cera, E.D. https://doi.org/10.1021/bi00162a008
  20. Biochem. Biophys. Res. Commun. v.152 Zhuo, S.;Allison, W.S. https://doi.org/10.1016/S0006-291X(88)80378-4
  21. Biochemistry v.32 Zhuo, S.;Paik, S.R.;Register, J.A.;Allison, W.S. https://doi.org/10.1021/bi00060a013