Interaction of ${\alpha}$-Ketoglutarate Dehydrogenase Complex with Allosteric Regulators Detected by a Fluorescence Probe, 1,1'-bi(4-aniline)naphthalene-5,5'-disulfonic acid, an Inhibitor of Catalytic Activity

  • Hong, Sung-Youl (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Bak, Choong-Il (Research Laboratories, Dong-A Pharmaceutical Company) ;
  • Ryu, Jae-Ha (College of Pharmacy, Sook-Myong Women's University) ;
  • Song, Byoung-J. (Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism) ;
  • Huh, Jae-Wook (Central Research Institute, Korea Green Cross Corporation)
  • Received : 1996.01.26
  • Published : 1996.05.31

Abstract

The interaction of ${\alpha}-ketoglutarate$ dehydrogenase complex (${\alpha}-KGDC$) with a hydrophobic fluorescent probe [1,1'-bi(4-aniline)naphthalene-5,5'-disulfonic acid] (bis-ANS) was studied. The punfied ${\alpha}-KGDC$ was potently inhibited by bis-ANS with an apparent half maximal inhibitory concentration ($IC_{50}$) of 9.8 ${\mu}m$ at pH 8.0. The catalytic activities of both the E1o and E2o subunits were predominantly inhibited while that of the E3 component was hardly affected. The binding of bis-ANS to the enzyme caused a marked enhancement and blue shift from 523 nm to 482 nm in the fluorescence emission spectrum. The dissociation constant ($K_d$) and the number of binding sites (n) were calculated to be 0.87 mM and 158, respectively. Allosteric regulators such as purine nucleotides and divalent cations further increased the fluorescence intensity of the $bis-ANS-{\alpha}-KGDC$ binary complex. These data suggest that the binding of these allosteric regulators to ${\alpha}-KGDC$ may cause the conformational changes in the enzyme and that bis-ANS could be used as a valuable probe to study the interaction of the multi-enzyme complex and its allosteric regulators.

Keywords

References

  1. Biochemistry v.10 Anderson, S.R. https://doi.org/10.1021/bi00799a002
  2. Anal. Biochem. v.72 Bradford, M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  3. FEBS Lett. v.303 Bunik, V.I.;Biryukov, A.I.;Zhukov, Y.N. https://doi.org/10.1016/0014-5793(92)80518-L
  4. FEBS Lett. v.278 Bunik, V.I.;Romash, O.G.;Gomazkova, V.S. https://doi.org/10.1016/0014-5793(91)80104-B
  5. Biochem. J. v.200 Cooney, C.J.;Taegmeyer, H.;Newsholme, E.A. https://doi.org/10.1042/bj2000701
  6. Anal. Biochem. v.62 Hall, E.R.;Weitzman, P.D.J. https://doi.org/10.1016/0003-2697(74)90389-3
  7. J. Biol. Chem. v.242 Hirashima, M.;Hayakawa, T.;Koike, M.
  8. Biochemistry v.24 Horowitz, P.M.;Criscimagna, N.L. https://doi.org/10.1021/bi00332a001
  9. J. Biol. Chem. v.259 Horowitz, P.M.;Prasad, V.;Luduena, R.F.
  10. Biochemistry v.29 Huang, Y.C.;Colman, R.F. https://doi.org/10.1021/bi00488a010
  11. J. Biol. Chem. v.242 Ide, S.;Hayakawa, T.;Okabe, K.;Koike, M.
  12. J. Am. Chem. Soc. v.99 Kluger, R.;Pike, D.C. https://doi.org/10.1021/ja00455a052
  13. Anal. Biochem. v.98 Kresze, G.B. https://doi.org/10.1016/0003-2697(79)90709-7
  14. Biochemistry v.20 Lawlis, V.B.;Roche, T.E. https://doi.org/10.1021/bi00512a023
  15. Arch. Biochem. Biophys. v.148 Linn, T.C.;Pelley, J.W.;Pettit, F.H.;Hucho, F.;Randall, D.D.;Reed, L.J. https://doi.org/10.1016/0003-9861(72)90151-8
  16. Proc. Natl. Acad. Sci. USA v.62 Linn, T.C.;Pettit, F.H.;Reed, L.J. https://doi.org/10.1073/pnas.62.1.234
  17. Biochemistry v.31 Mazumdar, M.;Parrack, P.K.;Mukhopadhyay, K.;Bhattacharyya, B. https://doi.org/10.1021/bi00143a016
  18. Biochem. J. v.180 McCormack, J.G.;Denton, R.M. https://doi.org/10.1042/bj1800533
  19. Biochem. Biophys. Res. Commun. v.143 Mizuno, Y.;Saitoh, T.;Sone, N. https://doi.org/10.1016/0006-291X(87)90346-9
  20. Biochemistry v.24 Musci, G.;Berliner, L.J. https://doi.org/10.1021/bi00336a006
  21. Biochemistry v.24 Musci, G.;Metz, G.D.;Tsunematsu, H.;Berliner, L.J. https://doi.org/10.1021/bi00329a035
  22. Biomed. Biochim. Acta v.49 Ostrovtsova, S.A.;Strumilo, S.A.
  23. Biochimie v.74 Pawelczyk, T.;Angielski, S. https://doi.org/10.1016/0300-9084(92)90042-D
  24. Methods Enzymol. v.89 Pettit, F.H.;Reed, L.J.
  25. Biochemistry v.25 Prasad, A.R.S.;Luduena, R.F.;Horowitz, P.M. https://doi.org/10.1021/bi00351a035
  26. The Enzymes, Vol. 18 Reed, L.J.;Yeaman, S.J.;Boyer, P.D.(ed.);Krebs, E.G.(ed.)
  27. J. Biochem. v.101 Rokutan, K.;Kawai, K.;Asada, K. https://doi.org/10.1093/oxfordjournals.jbchem.a121926
  28. Biochem. J. v.252 Rutter, G.Y.;Denton, R.M. https://doi.org/10.1042/bj2520181
  29. J. Biol. Chem. v.197 Sanadi, D.R.;Littlefield, J.W.;Bock, R.M.
  30. Proc. Natl. Acad. Sci. USA v.74 Takashi, R.;Tonomura, Y.;Morales, F. https://doi.org/10.1073/pnas.74.6.2334
  31. J. Biol. Chem. v.247 Tanaka, N.;Koike, K.;Hamada, M.;Otsuka, K.;Suematsu, T.;Koike, M.
  32. Contr. Nephrol. v.31 Tullson, P.;Goldstein, L.
  33. J. Biol. Chem. v.246 Wang, J.L.;Edelman, G.M.
  34. Biochim. Biophys. Acta v.1040 Yoo, S.H.;Albanesi, J.P.;Jameson, D.M. https://doi.org/10.1016/0167-4838(90)90146-7
  35. J. Biol. Chem. v.256 Zoller, M.J.;Nelson, N.C.;Taylor, S.S.