Construction of Yeast Vectors Potentially Useful for Expression of Eukaryotic Genes as ${\beta}$-galactosidase Fusion Proteins

  • Chung, Kyung-Sook (Cell Cycle and Signal Research Unit, Korea Research Institute of Bioscience and Biotechnology, KIST) ;
  • Choi, Won-Ja (Dept. of Biology, Ewha Womans University) ;
  • Lee, Hee-Won (Cell Cycle and Signal Research Unit, Korea Research Institute of Bioscience and Biotechnology, KIST) ;
  • Kim, Kyu-Won (Dept. of Molecular Biology, Pusan National University) ;
  • Yoo, Hyang-Sook (Cell Cycle and Signal Research Unit, Korea Research Institute of Bioscience and Biotechnology, KIST)
  • Received : 1996.03.19
  • Published : 1996.07.31

Abstract

By both in vitro hydroxylamine mutagenesis of the wild type 3-phosphoglycerate kinase gene (PGK) promoter DNA and insertion of the leu2-d gene, we have created yeast expression vectors potentially useful for production of eukaryotic genes in yeast. The guanine (G) to adenine (A) change at the -3 position from the ATG start codon of the PGK promoter-based vector rendered a 6~7 times elevated expression of the adjacent eukaryotic gene, and insertion of the leu2-d gene in the vector containing the mutated PGK promoter further enhanced the expression of the gene. When expression of the AIDS virus HIV1-gagP17 gene in a lacZ fusion form was examined with this new vector, a 15 times higher level of expression than that from the original PGK promoter was observed. Northern and Southern analysis showed that this elevated expression is due to the production of a high copy number of mRNA by leu2-d gene functioning and by efficient translation of the produced mRNA. Thus, the vector that contained the A at the -3 position from the ATG start codon in the promoter region and the leu2-d gene shows increased expression capability and will be potentially useful for production of eukaryotic genes in yeast.

Keywords

References

  1. Nature v.329 ?Adams, S.E.;Dawson, K.M.;Gull, K.;Kingsman, S.M.;?Kingaman, A.J. https://doi.org/10.1038/329068a0
  2. Cell v.28 Carlson, M.;Botstein, D. https://doi.org/10.1016/0092-8674(82)90384-1
  3. Methods Enzymol. v.185 Etcheverry, T.
  4. Nucl. Acids Res. v.11 Hitzeman, R.A.;Chen, C.Y.;Hagie, F.E. https://doi.org/10.1093/nar/11.9.2745
  5. Science v.219 Hitzeman, R.A.;Leung, D.W.;Perry, L.J.;Kohr, W.J.;Levine, H.L.;Goeddle, D.V. https://doi.org/10.1126/science.6186023
  6. J. Bacteriol. v.153 Ito, H.;Fukuda, Y.;Murada, K.;Kimura, A.
  7. Methods Enzymol. v.185 Kingsman, S.M.;Cousens, D.;Stanway, C.A.;Chambers, A.;Wilson, M.;Kingsman, A.J.
  8. Cell v.44 Kozak, M. https://doi.org/10.1016/0092-8674(86)90762-2
  9. Plasmid v.21 Macreadie, I.G.;Jagadish, M.N.;Azad, A.A.;Vaughan, P.R. https://doi.org/10.1016/0147-619X(89)90059-0
  10. Molecular Cloning Maniatis, T.;Fritsch, E.F.;Sambrook, J.C.
  11. Gene v.24 Mellor, J.;Dobson, M.J.;Roberts, N.A.;Tuite, M.F.;Whites, S.;Lowe, P.A.;Patel, T.;Kingsman, A.J.;Kingsman, S.M. https://doi.org/10.1016/0378-1119(83)90126-9
  12. Experiments in Molecular Genetics Miller, J.M.
  13. Methods Enzymol. v.185 Price, V.L.;Taylor, W.E.;Clevenger, W.;Worthington, M.;Young, E.T.
  14. Methods Enzymol. v.185 Rose, A.B.;Broach, J.R.
  15. Cell v.48 Rose, M.D.;Finks, G.R. https://doi.org/10.1016/0092-8674(87)90712-4
  16. Methods Enzymol. v.185 Rosenberg, S.;Coit, D.;Tekamp-Olson, P.
  17. Method in Yeast Genetics Sherman, F.;Fink, G.R.;Hicks, J.B.
  18. EMBO J. v.1 Tuite, M.F.;Dobson, M.J.;Roberts, N.A.;King, R.M.;Burke, D.C.;Kingsman, S.M.;Kingsman, A.J.
  19. Gene v.19 Vieira, J.;Messing, J. https://doi.org/10.1016/0378-1119(82)90015-4
  20. Nature v.314 Wood, C.R.;Boss, M.A.;Kenton, J.H.;Calvert, J.E.;Roberts, N.A.;Emtage, J.S. https://doi.org/10.1038/314446a0
  21. Reserch Report of KIST BSF 80230-250-1 Yoo, H.S.;Choi, W.J.;Lee, H.W.;Kim, K.M.;Kwon, J.B.;Cooper, T.
  22. Korean J. Microbiol. v.29 Yoo, H.S.;Jang, W.H.;Park, H.D.;Hyun, S.W.;Nham, S.U.;Lee, Y.I.