Effects of Chilling Injury in the Light on Chlorophyll Fluorescence and D1 Protein Turnover in Cucumber and Pea Leaves

  • Eu, Young-Jae (Department of Molecular Biology, Pusan National University) ;
  • Ha, Suk-Bong (Department of Molecular Biology, Pusan National University) ;
  • Lee, Choon-Hwan (Department of Molecular Biology, Pusan National University)
  • Received : 1996.03.19
  • Published : 1996.09.30

Abstract

Light-chilling effects were investigated in chilling-sensitive cucumber (Cucumis sativus L. cv. Ilmichungjang) and chilling-resistant pea (Pisum sativum L. cv. Giant) leaf discs in relation to possible damage in D1 protein. In both plants, dark-chilling did not cause any noticeable changes in (Fv)m/Fm and lincomycin did not affect the decrease in (Fv)m/Fm caused by light-chilling. This result suggests that the de novo synthesis of D1 protein did not occur actively during light-chilling. In pea light-chilled for 6 h. the decreased (Fv)m/Fm was partly recovered in the dark, and almost complete recovery was observed in the light. In cucumber light-chilled for 3 h. the reduced (Fv)m/Fm decreased further for the initial 2 h recovery process in the light regardless of the treatment of lincomycin and recovered very slowly. In both plant species, the treatment of lincomycin inhibited the recovery process in the light, but did not significantly inhibit the process in the dark. In cucumber leaves pulse-labeled with $[^{35}S]Met$, the labeled band intensities of isolated pigment-protein complexes were almost the same during the 6 h light-chilling, but significant decreases in band intensities were observed during the 3 h recovery period. This result suggests that the irreversibly damaged D1 protein was degraded during the recovery period. However, no noticeable changes were observed in the pea leaves during the 12 h chilling and 3 h recovery period. The polyacrylamide gel electrophoresis of the pigment-protein complexes showed that the principal lesion sites of light-chilling were different from those of room temperature photoinhibition.

Keywords

References

  1. Anal. Biochem. v.194 Allen, K.D.;Staehelin, L.A. https://doi.org/10.1016/0003-2697(91)90170-X
  2. J. Photochem. Photobiol. B: Biol. v.15 Andersson, B.;Salter, A.H.;Virgin, I.;Vass, I.;Styring, S. https://doi.org/10.1016/1011-1344(92)87003-R
  3. Plant Physiol. v.24 Arnon, D.I. https://doi.org/10.1104/pp.24.1.1
  4. Biochim. Biophys. Acta v.1019 Aro, E.M.;Hundal, T.;Carlberg, I.;Andersson, B. https://doi.org/10.1016/0005-2728(90)90204-H
  5. Plant Physiol. v.103 Aro, E.M.;McCaffery, S.;Anderson, J.M. https://doi.org/10.1104/pp.103.3.835
  6. Biochim. Biophys. Acta v.1143 Aro, E.M.;Virgin, I.;Andersson, B. https://doi.org/10.1016/0005-2728(93)90134-2
  7. Plants and Temperature Baker, N.R.;Long, S.P.;Ort, D.R.;Long, S.P.(ed.);Woodward, F.I.(ed.)
  8. Photochem. Photobiol. v.52 Bassi, R.;Rigoni, F.;Giacometti, G.M. https://doi.org/10.1111/j.1751-1097.1990.tb08457.x
  9. Proc. Natl. Acad. Sci. USA v.75 Bedbrook, J.R.;Link, B.;Boen, D.M.;Bogorad, L.;Rich, A. https://doi.org/10.1073/pnas.75.7.3060
  10. Photosynth. Res. v.21 Chow, W.S.;Osmond, C.B.;Huang, L.K.
  11. Plant Physiol. v.59 Garber, M.P. https://doi.org/10.1104/pp.59.5.981
  12. Proc. Natl. Acad. Sci. USA v.91 Gombos, Z.;Wada, H.;Murata, N. https://doi.org/10.1073/pnas.91.19.8787
  13. J. Plant Physiol. v.134 Gong, H.;Nilsen, S. https://doi.org/10.1016/S0176-1617(89)80194-4
  14. Planta v.174 Greer, D.H.;Laing, W.A.;Kipnis, T. https://doi.org/10.1007/BF00394766
  15. J. Photosci. v.3 Ha, S.B.;Eu, Y.J.;Lee, C.H.
  16. Photosynth. Res. v.40 Havaux, M.;Davaud, A. https://doi.org/10.1007/BF00019047
  17. Methods in Plant Biochemistry, Vol. 4 Horton, P.;Bowyer, J.R.;Harwood, J.L.(ed.);Bowyer, J.R.(ed.)
  18. Biochemistry v.29 Kirilovsky, D.L.;Vemotte, C.;Etienne, A.L. https://doi.org/10.1021/bi00487a016
  19. Photochem. Photobiol. v.4 Kok, B.;Gassner, E.B.;Rurainski, H.J. https://doi.org/10.1111/j.1751-1097.1965.tb05739.x
  20. Topics in Photosynthesis, Vol. 9 Kyle, D.J.;Kyle, D.J.(ed.);Osmond, C.B.(ed.);Arntzen, C.J.(ed.)
  21. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  22. Plant Mol. Biol. v.13 Mohamed, A.;Jansson, C. https://doi.org/10.1007/BF00016024
  23. Physiol. Plant. v.62 Ogren, E.;Oquist, G. https://doi.org/10.1111/j.1399-3054.1984.tb00369.x
  24. Physiol. Plant. v.62 Ogren, E.;Oquist, G. https://doi.org/10.1111/j.1399-3054.1984.tb00370.x
  25. Topics in Photosynthesis, Vol. 9 Oquist, G.;Greer, D.H.;Ogren, D.;Kyle, D.J.(ed.);Osmond, C.B.(ed.);Arntzen, C.J.(ed.)
  26. Func. Ecol. v.5 Oquist, G.;Huner, N.P.A. https://doi.org/10.2307/2389559
  27. Photosynth. Res. v.35 Ottaner, C.;Hundal, T.;Andersson, B.;Huner, N.P.A.;Oquist, G. https://doi.org/10.1007/BF00014750
  28. The Photosystems: Structure, Function and Moecular Biology Prasil, O.;Adir, N.;Ohad, K.;Barber, J.(ed.)
  29. Eur. J. Biochem. v.221 Santini, C.;Tidu, V.;Tognon, G.;Ghiretti Magaldi, A.;Bassi, R. https://doi.org/10.1111/j.1432-1033.1994.tb18742.x
  30. Plant Cell Physiol. v.11 Satoh, K. https://doi.org/10.1093/oxfordjournals.pcp.a074487
  31. Plant Physiol. v.70 Satoh, K.;Fork, D.C. https://doi.org/10.1104/pp.70.4.1004
  32. Applications of Chlorophyll Fluorescence in PHotosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing Somersalo, S.;Krause, G.H.;Lichtenthaler, H.K.(ed.)
  33. Planta v.177 Somersalo, S.;Krause, G.H. https://doi.org/10.1007/BF00403600
  34. Plant Physiol. v.47 Taylor, A.O.;Rowley, J.A. https://doi.org/10.1104/pp.47.5.713
  35. Planta v.193 Terashima, I.;Funayama, S.;Sonoike, K.
  36. J. Exp. Bot. v.24 Wright, M.;Simon, E.W. https://doi.org/10.1093/jxb/24.2.400