Cell Surface Expression of Tumor Necrosis Factor-Alpha by Activated Rat Astrocytes

  • Chung, Il-Yup (Department of Biochemistry and Molecular Biology, Hanyang University) ;
  • Benveniste, Etty N. (Department of Cell Biology, University of Alabama at Birmingham)
  • Received : 1996.08.08
  • Published : 1996.11.30

Abstract

Astrocyte are the major glial cell type in the central nervous system (CNS), and analogous to macrophage, mediates the number of immune responses such as production of cytokines including tumor necrosis factor alpha ($TNF-{\alpha}$) upon activation. $TNF-{\alpha}$ has been implicated in neuroimmunological disorders through killing oligodendrocytes and thus causing demyelination. It has been previously demonstrated that mitogen-activated T cells synthesized a 26 kDa precursor form of $TNF-{\alpha}$ which is bound to the surface of a membrane, and is later secreted as a 17 kDa mature version. In order to examine whether astrocytes would produce the transmembrane form of $TNF-{\alpha}$, astrocytes were stimulated with biological stimuli and the membrane form of $TNF-{\alpha}$ was analyzed by Western blot and FACS analysis. When astrocytes are stimulated with lipopolysaccharide (LPS), $IFN-{\gamma}/LPS$, or $IFN-{\gamma}/IL-1{\beta}$, they were able to express a membrane-anchored $TNF-{\alpha}$ of approximately 26 kDa protein which was immunoreactive to an $anti-TNF-{\alpha}$ antibody, whereas unstimulated astrocytes or astrocytes treated with $IFN-{\gamma}$ or $IL-1{\beta}$ alone was not. Our FACS data were also consistent with the immunoblot analysis. Our result suggests that the membrane form of $TNF-{\alpha}$ expressed by activated astrocytes may cause local damage to oligodendrocytes by direct cell-cell contact and contribute to demyelination observed in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE).

Keywords

References

  1. J. Neuroimmunol. v.30 Benveniste, E.N.;Sparacio, S.M.;Norris, J.G.;Grenett, H.E.;Fuller, G.M.
  2. Am. J. Physiol. v.263 no.32 Benveniste, E.N. https://doi.org/10.1152/ajpcell.1992.263.1.C1
  3. Tumor Necrosis Factors Beutler, B.
  4. Brain Res. v.43 Bignami, A.;Eng, L.F.;Dahl, D.;Uyeda, C.T. https://doi.org/10.1016/0006-8993(72)90398-8
  5. J. Exp. Med. v.169 Brett, J.;Gerlach, H.;Nawroth, P.;Steinberg, S.;Godman, G.;Stern, D. https://doi.org/10.1084/jem.169.6.1977
  6. Cell v.48 Bringman, T.S.;Lindquist, P.B.;Derynick, R. https://doi.org/10.1016/0092-8674(87)90194-2
  7. J. Immunol. v.147 Browning, J.L.;Androlewicz, C.F.;Ware, C.F.
  8. J. Immunol. v.144 Chung, I.Y.;Benveniste, E.N.
  9. J. Immunol. v.149 Chung, I.Y.;Kwon, J.;Benveniste, E.N.
  10. J. Immunol. Methods v.95 Espevik, T.;Nissen-Meyer, J. https://doi.org/10.1016/0022-1759(86)90322-4
  11. Nature v.307 Fontana, A.;Fierz, W.;Wekerle, H. https://doi.org/10.1038/307273a0
  12. Immunol. Rev. v.100 Fontana, A.;Frei, K.;Bodmer, S.;Hofer, E. https://doi.org/10.1111/j.1600-065X.1987.tb00532.x
  13. Eur. J. Immunol. v.19 Frei, K.;Malipiero, U.V.;Leist, T.P.;Zinkernagel, R.M.;Schwab, M.E.;Fontana, A. https://doi.org/10.1002/eji.1830190418
  14. Immunol. Today v.11 Herz, L.;McFarlin, D.E.;Waksman, B.H.
  15. Sei. Am. v.260 Kimelberg, H.K.;Norenberg, M.D.
  16. J. Exp. Med. v.171 Kinkhalbwala, M.;Sehajpal, P.;Skolnik, E.;Smith, D.;Sharma, V.K.;Vlassara, H.;Cerami, A.;Suthanthiran, M.
  17. Cell v.53 Kriegler, M.;Perez, C.;DeFaY, K.;Albert, I.;Lu, S.D. https://doi.org/10.1016/0092-8674(88)90486-2
  18. Nature v.227 Laemmli, V.K. https://doi.org/10.1038/227680a0
  19. J. Neuroimmunol. v.18 Lavi, E.;Suzumura, A.;Murasko, D.M.;Murray, E.M.;Silberberg, D.H.;Weiss, S.R. https://doi.org/10.1016/0165-5728(88)90102-6
  20. Proc. Natl. Acad. Sci. USA v.86 Lieberman, A.P.;Pitha, P.M.;Shin, H.S.;Shin, M.L. https://doi.org/10.1073/pnas.86.16.6348
  21. J. Cell Biol. v.117 Lindholm, D.;Castren, E.;Kiefer, R.;Zafra, F.;Thoenen, H.
  22. J. Immunol. v.144 Malipiero, U.V.;Frei, K.;Fontana, A.
  23. Proc. Natl. Acad. Sci. USA v.84 Massa, P.T.;Schmipi, A.;Werker, E.;ter Meulen, V. https://doi.org/10.1073/pnas.84.20.7242
  24. Science v.267 Nagata, S.;Golstein, P. https://doi.org/10.1126/science.7533326
  25. Nature v.312 Pennica, D.;Nedwin, G.E.;Hayflick, J.S.;Seeburg, P.H.;Derynck, R.;Palladino, W.J.;Aggarawal, B.B.;Goeddel, D.V. https://doi.org/10.1038/312724a0
  26. Cell v.63 Perez, C.;Albert, I.;DeFay, K.;Zachariades, N.;Gooding, L.;Kriegler, M. https://doi.org/10.1016/0092-8674(90)90158-B
  27. J. Immunol. v.139 Robbins, D.S.;Shirazi, Y.;Drysdale, B.E.;Leiberman, A.;Shin, H.S.;Shin, M.L.
  28. Science v.221 Scott, J.;Urdea, M.;Quiroga, M.;Sanchez-Pescador, R.;Fong, N.;Seloby, M.;Rutter, W.J.;Bell, G.I. https://doi.org/10.1126/science.6602382
  29. Ann. Neurol. v.23 Selmaj, K.;Raine, C.S. https://doi.org/10.1002/ana.410230405
  30. J. Clin. Invest. v.87 Selmaj, K.;Raine, C.S.;Cannella, B.;Brosnan, C.F. https://doi.org/10.1172/JCI115102
  31. J. Neuroimmunol. v.51 Shrikant, P.;Chung, I.Y.;Ballestas, M.E.;Benveniste, E.N. https://doi.org/10.1016/0165-5728(94)90083-3
  32. Annu. Rev. Immunol. v.10 Vasselli. P. https://doi.org/10.1146/annurev.iy.10.040192.002211
  33. J. Neuroimmunol. v.30 Vidovic, M.;Sparacio, S.M.;Elovitz, M.;Benveniste, E.N. https://doi.org/10.1016/0165-5728(90)90103-T