Antibacterial Activities of Peptides Designed as Hybrids of Antimicrobial Peptides

  • Shin, Song-Yub (Peptide Engineering Research Unit. Korea Research Institute of Bioscience and Biotechnology, KIST) ;
  • Kang, Joo-Hyun (Peptide Engineering Research Unit. Korea Research Institute of Bioscience and Biotechnology, KIST) ;
  • Lee, Myung-Kyu (Peptide Engineering Research Unit. Korea Research Institute of Bioscience and Biotechnology, KIST) ;
  • Hahm, Kyung-Soo (Peptide Engineering Research Unit. Korea Research Institute of Bioscience and Biotechnology, KIST)
  • Received : 1996.08.23
  • Published : 1996.11.30

Abstract

CA(1-8)ME(1-12), the CA-ME hybrid peptide of the amino terminal segments of cecropin A (CA) and melittin (ME), has been reported to have a broad spectrum and improved potency without a hemolytic property. In order to obtain new synthetic peptides with powerful antibacterial activity without hemolytic activity, several hybrid peptides were designed from the sequences of CA, ME, magainin 2, bombinin and lactoferricin. All hybrid peptides were constructed to form an amphipathically basic-flexible-hydrophobic structure and synthesized by the solid phase method. Their hemolytic activities against human red blood cells and antibacterial activities against both Gram-positive and Gram-negative bacteria were detennined. CA(1-8)MA(1-12), CA(1-8)BO(1-12), MA(10-17)ME(1-12) and LF(20-29)ME(1-12) showed comparable activities with broad spectra against both Gram-positive and Gram-negative bacteria relative to CA(1-8)ME(1-12) but without hemolytic properties. These hybrid peptides, therefore, could be useful as model peptides to design a novel peptide with improved antibacterial activity and study on structure-activity relationships of antimicrobial peptides.

Keywords

References

  1. FEBS Lett. v.296 Andreu, D.;Ubah, J.;Boman, A.;Wahlin, D.;Wade, D.;Merrifeld, R.B.;Boman, H.G. https://doi.org/10.1016/0014-5793(92)80377-S
  2. Biochim. Biophys. Acta v.1121 Bellamy, W.;Takase, M.;Yamauchi, K.;Wakabayashi, H.;Kawase, K.;Tomita, M. https://doi.org/10.1016/0167-4838(92)90346-F
  3. Biochem. Pharmacol. v.39 Berkowitz, B.A.;Bevins, C.L.;Zaslof, M. https://doi.org/10.1016/0006-2952(90)90138-B
  4. FEBS Lett. v.259 Boman, H.G.;Wade, D.;Boman, I.A.;Wahlin, B.;Merrifield, R.B. https://doi.org/10.1016/0014-5793(89)81505-4
  5. Cell v.65 Boman, H.G. https://doi.org/10.1016/0092-8674(91)90154-Q
  6. Annu. Rev. Immunol. v.13 Boman, H.G. https://doi.org/10.1146/annurev.iy.13.040195.000425
  7. FEBS Lett. v.236 Chen, H.C.;Brown, J.H.;Morell, J.L.;Huang, C.M. https://doi.org/10.1016/0014-5793(88)80077-2
  8. Proc. Natl. Acad. Sci. USA v.88 Cruciani, R.A.;Barker, J.L.;Zasloff, M.;Chen, H.C. https://doi.org/10.1073/pnas.88.9.3792
  9. Science v.177 Habermann, E. https://doi.org/10.1126/science.177.4046.314
  10. Rapid Commun. Mass Spectrom. v.5 Hill, J.A.;Annan, R.S.;Biemann, K. https://doi.org/10.1002/rcm.1290050905
  11. EMBO J. v.2 Hultmark, D.;Engstrom, A.;Andersson, K.;Steiner, H.;Bennich, H.;Boman, H.G.
  12. Int. J. Pept. Protein Res. v.34 Kini, R.M.;Evans, H.J.
  13. Science v.232 Merrifield, R.B. https://doi.org/10.1126/science.3961484
  14. Comp. Biochem. Physiol. v.95B Morishima, I.;Suginaka, S.;Ueno, T.;Hirano, H.
  15. Biochem. J. v.316 Rivett, D.E.;Kirkpatrick, A.,;Hewish, D.R.;Reilly, W.;Werkmeister, J.A. https://doi.org/10.1042/bj3160525
  16. J. Biochem. Mol. Biol. (foremerly Korean Biochem. J.) v.28 Shin, S.Y.;Kang, S.W.;Ha, J.M.
  17. Nature v.292 Steiner, H.;Hultmark, A.;Engstrom, H.;Bennich, H.; Boman, H.G. https://doi.org/10.1038/292246a0
  18. Int. J. Pept. Protein Res. v.40 Wade, D.;Andreu, D.;Mitchell, S.A.;Silveira, A.M.V.;Boman, A.;Boman, H.G.;Merrifield, R.B.
  19. Proc. Natl. Acad. Sci. USA v.85 Zasloff, M.;Martin, B.;Chen, H.C. https://doi.org/10.1073/pnas.85.3.910