Comparison of Bradykinin- and Platelet-Derived Growth Factor-Induced Phosphoinositide Turnover in NIH 3T3 Cells

  • Lee, Kee-Ho (Laboratory of Molecular Oncology, Korea Cancer Center Hospital) ;
  • Ryu, Yong-Wun (Laboratory of Molecular Oncology, Korea Cancer Center Hospital) ;
  • Yoo, Young-Do (Laboratory of Experimental Therapeutics, Korea Cancer Center Hospital) ;
  • Bai, Dong-Hoon (Department of Food Engineering, Dan Kook University) ;
  • Yu, Ju-Hyun (Department of Food Engineering, Yonsei University) ;
  • Kim, Chang-Min (Laboratory of Molecular Oncology, Korea Cancer Center Hospital)
  • Received : 1996.08.28
  • Published : 1996.11.30

Abstract

Phosphoinositide turnover in response to platelet-derived growth factor, epidermal growth factor, and bradykinin was evaluated in NIH 3T3 cells. Platelet-derived growth factor and bradykinin induced a significant increase in incorporation of $^{32}P$ into phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4.5-bisphosphate ($PIP_2$) in serum-starved NIH 3T3 cells. However, epidermal growth factor increased incorporation of $^{32}P$ into these phosphoinositides by only a small amount. Stimulation with platelet-derived growth factor, not bradykinin, caused a rapid elevation of PI and PIP kinase activities that were maximally activated within 10 min. The maximal levels of their elevation in cells with plateletderived growth factor stimulation were 3.2-fold for PI kinase, and 2.1-fold for PIP kinase. Short term pretreatment of NIH 3T3 cells with phorbol 12-myristate 13-acetate, activator of protein kinase C. caused an approximately 60% decrease in platelet-derived growth factor-induced PI kinase activities, indicating the feedback regulation of phosphoinositide turnover by protein kinase C. These results suggest that although the enhancement of phosphoinositide turnover is a rapidly occurring response in platelet-derived growth factor- or bradykinin-stimulated NIH 3T3 cells, phosphoinositide kinases may be associated with initial signal transduction pathway relevant to platelet-derived growth factor but not to bradykinin.

Keywords

References

  1. Nature v.312 Berridge, M.J.;Irvine, R.F. https://doi.org/10.1038/312315a0
  2. Cell v.42 Carney, D.H.;Scott, D.L.;Gordon, E.A.;LaBelle, E.F. https://doi.org/10.1016/0092-8674(85)90105-9
  3. J. Biol. Chem. v.226 Cochet, C.;Filhol, O.;Payrastre, B.;Hunter, T.;Gill, G.N.
  4. Clin. Invest. v.50 Cohen, P.;Broekman, M.J.;Verkley, A.;Lisman, J.W.W.;Derksen, A.J. https://doi.org/10.1172/JCI106547
  5. Science v.248 Coughlin, S.R.;Escobedo, J.A.;Williams, L.T.
  6. Cell v.51 Di Fiore, P.P.;Pierce, J.H.;Fleming, T.P.;Hazan, R.;Ullrich, A.;King, C.R.;Schlessinger, J.;Aaronson, S.A. https://doi.org/10.1016/0092-8674(87)90592-7
  7. Biochem. J. v.283 Fu, T.;Okano, Y.;Nozawa, Y. https://doi.org/10.1042/bj2830347
  8. J. Biol. Chem. v.262 Kato, M.;Kawai, S.;Takenawa, T.
  9. Science v.268 Kauffmann-Zeh, A.;Thomas, G.M.H.;Ball, A.;Prosser, S.;Cunningham, E.;Cockcroft, S.;Hsuan, J.J. https://doi.org/10.1126/science.7761838
  10. Int. J. Biochem. v.26 Kumada, T.;Banno, Y.;Miyata, H.;Nozawa, Y. https://doi.org/10.1016/0020-711X(94)90077-9
  11. Exp. Cell Res. v.211 Lassing, I.;Mellstrom, K.;Nister, M. https://doi.org/10.1006/excr.1994.1089
  12. J. Biol. Chem. v.262 MacDonald, M.L.;Mack, K.F.;Glomset, J.A.
  13. Cell v.63 Majerus, P.W.;Ross, T.S.;Cunningham, T.W.;Caldwell, K.K.;Jefferson, A.B.;Bansal, V.S. https://doi.org/10.1016/0092-8674(90)90442-H
  14. Mol. Cell. Biol. v.10 Margolis, B.;Bellot, F.;Honegger, A.M.;Ullich, A;Schlessinger, J.;Zilberstein, A. https://doi.org/10.1128/MCB.10.2.435
  15. Am. J. Physiol. v.265 McAllister, B.S.;Leeb-Lundberg, F.;Olson, M.S. https://doi.org/10.1152/ajpcell.1993.265.2.C477
  16. J. Biol. Chem. v.267 Moritz, A.;DeGraan, P.N.E.;Gispen, W.H.;Wirtz, K.W.A.
  17. J. Neurochem. v.57 Owen, P.J.;Boarder, M.R. https://doi.org/10.1111/j.1471-4159.1991.tb08217.x
  18. Biochem. Biophys. Res. Commun. v.163 Pandiella, A.;Magni, M.;Medolesi, J. https://doi.org/10.1016/0006-291X(89)91123-6
  19. Proc. Natl. Acad. Sci. USA v.74 Pledger, W.J.;Stiles, C.D.;Antoniades, H.N.;Sher, C.D. https://doi.org/10.1073/pnas.74.10.4481
  20. J. Biol. Chem. v.263 Porter, F.D.;Li, Y.S.;Deuel, T.F.
  21. FEBS Lett. v.330 Racaud-Sultan, C.;Mauco, G.;Guinebault, C.;Plantavid, M.;Payrastre, B.;Breton, M.;Chap, H. https://doi.org/10.1016/0014-5793(93)80902-7
  22. Physiol. Rev. v.70 Rana, R.S.;Hokin, L.E. https://doi.org/10.1152/physrev.1990.70.1.115
  23. Biochem. J. v.281 Renard, D.C.;Bolton, M.M.;Rhee, S.G.;Margolis, B.L.;Zilberstein, A.;Schlessinger, J.;Thomas, A.P. https://doi.org/10.1042/bj2810775
  24. J. Biol. Chem. v.260 Thompson, D.M.;Cochet, C.;Chambaz, E.M.;Gill, G.N.
  25. Proc. Natl. Acad. Sci. USA v.84 Walker, D.H.;Pike, L.J. https://doi.org/10.1073/pnas.84.21.7513
  26. Cancer Res. v.46 Ways, D.K.;Dodd, R.C.;Gwynne, J.T.;Earp, H.S.
  27. Biochem. J. v.247 Whitman, M.;Kaplan, D.;Roberts, T.;Cantely, L. https://doi.org/10.1042/bj2470165
  28. J. Biol. Chem. v.259 Yano, K.;Higashida, H.;Inoue, R.;Nozawa, Y.