제란의 위생적 취급방안

이 성 기
강원대학교 축산가공학과 교수

1. 머리말

제란은 조그만 크기에도 불구하고 풍부한 기능을 갖춘 생명체인 병아리를 탄생시킬 만큼 영양가가 높부히 들어 있고 또 소화흡수도 잘 되는 식품이기 때문에 인간에게는 신이 준 귀한 선물이라고도 할 수 있다. 이렇게 영양가가 많은 식품은 인간뿐만 아니라 미생물에게도 좋은 영양원이 될 수가 있어 또한 오염 및 부패되기 가 쉽다. 그러나 파손되지 않은 신선한 제란은 난각, 난각막, 난백층, 난황막 등으로 구성되어 있어 조직적인 측면에서 틀튼한 방어구조를 가지며, 그들중 일부 단백질은 특이한 미생물 성장억제 성분이 들어있어 미생물의 방어기능이 대단히 우수하다. 그러므로 파손시키거나 장기간 열악한 조건에서 제란을 방치시키지 않는다면 상당히 안전한 품질을 유지하는 식품이라 할 수 있다. 그러나 취급주의로 말미암아 미생물이 일단 노른자까지 도달하게 되면 급속히 부패하게 되고, 밥, 샐러드, 요리, 음식, 위생적인 측면에서 상품의 가치를 잃게 되므로 사전에 위생적인 처리와 유통이 필요하다.

2. 제란의 오염

제란은 대부분 산란후부터 오염되기 시작하
지만 극히 일부는 산란전에도 오염될 수가 있다고 한다. 산란전 오염에 대해서는 과학적인 구명이 아직 미흡한 상태이나, 일반적으로 미생물을 소화관에서 혈액을 통해 유입되어 계란생성 과정중에 난각막 내부로 이입된다는 설(説)이다. 산란전에 이미 오염된 계란을 남겼으므로 먹어도 인체에 해가 되지 않는다고 알려지고 있고, 따라서 위생적인 측면에서 거의 무시해도 되는 미생물이다. 

산란후 오염은 엄격히 말하면 산란과정부터 시작된다. 계란표면에 붙어 있는 대부분의 미생물은 계란이 난란을 통해 외부로 방출일때 난각표면에 습한 상태가 되며 이때 흠, 먼지 등 이물질이 쉽게 묻어 오염된다. 

무예 위생적으로 처리된 계자에서 깨끗하게 취급된 계란일지라도 난각표면에 몫백에서 몫천마리(평균 10만 마리)의 세균이 부착된다. 또한 계란을 부적절한 온도와 습도에서 장시간 저장하게 되면 난각의 미세한 기공(細孔, Pore)이 열려서 표면세균이 내부로 쉽게 침입하거나 심할 경우 곰팡이가 자라서 내부를 부패시킨다.

3. 계란은 미생물을 방어할 수 있는 천연 요새

생계란을 잘 취급하여 적당한 환경에 저장해 두면 다른 식품에 비해 상당히 오랜 기간동안 상하지 않는다는 점은 계란이 저축 구조적, 화학적 방어체계가 매우 우수하기 때문이다.

(1) 구조적 방어체계

계란의 구조를 보면 난각, 난각막, 난백 및 난황으로 이루어져 있다. 난각은 탄산감습이 94% 이상 함유하고 있어 달걀이 흔히 노른자물 외부에서 단단히 감싸주는 보호막이다. 그러므로 외부 미생물로부터 오염을 빚어가는 최전선의 파수꾼이다. 난각에는 계란 1개당 7,000~17,000개의 미세한 구멍(기공, pore)이 있어 산란후에도 계속적으로 호흡과 수분증발 작용을 한다. 기공을 통해 내부에서 외부로 수분이나 이산화탄소를 방출하지만, 반대로 외부의 물이나 미생물이 내부로 들어가지 못하도록 신비한 작용을 한다. 이러한 기공 상층부에는 쿠티클(cuticle)이라는 단백질층이 덮여있어 외부 미생물의 침입을 이중적으로 막아주고 있다. 그러니 일부 연구에 의하면 계란 1개당 10~20여개의 기공은 쿠티클이 덮여 있지 않는다고 하며, 또 산란후 96시간 이상이 경과하며 기공을 덮어 미생물
침입을 억제시키는 기능이 서서히 상실된다고 한다.

난각 내부에는 2개의 난각막이 존재한다. 난각막은 desmosine, isodesmosine과 같은 단백질과 탄수화물이 결합된 단단한 백질이 엎기고 섞여 입체적 그물망을 형성하고 있다. 만약 세균이 침입하게 되면 복잡한 그물망 때문에 통과하기에 매우 힘들게 되어 있다. 2개의 난각막중에 안쪽에 있는 내난각막은 외난각막보다 조직이 치밀하고 속털옷같이 봉송봉송 많은 털이 나와있는 상태이므로 일반적으로 미생물이 이 막(막)을 통과하는데 1~4일의 장시간이 소요된다.

난백의 구조도 미생물이 통과하기에 매우 어렵게 되어 있다. 난백은 알RequiredMixin(chalazae)이 양쪽으로 난항을 지지하고 있어 난항이 앞 중앙부에 있도록 고정시킨다. 또한 난백은 수양난백과 농후난백으로 각각 2중으로 격벽을 쌓여 있는데, 농후난백인 경우는 점토가 높아서 미생물이 이동을 방해하게 된다. 또한 난항 단백질은 대부분 엘라스틱 섬유(elastic fiber), 라이소자인(lysozyme)과 오브류스(ovomucin)가 상호 보호 역할을 하는데, 난각막의 구조를 하고 있기 때문에 역시 방어체계가 우수하다.

난항막도 1차적으로 난항을 각각으로 세균을 억제시킨다는 기능이 서서히 상실됨으로써 작용을 하지 못한다. 원인은 알RequiredMixin과 탄수화물의 결합이 불탄소산소가 되어 방산되어야 만 한 개발방아마귀로도 작용을 한다.

(2) 화학적 방어체계
개란은 구조적 방어체계뿐만 아니라 개란자체가 지니는 특이한 화학적 조성 때문에 미생물이 쉽게 접근하지 못하도록 되어 있다. 신선한 개란의 pH는 7.6~7.9로 중성영역에 속하나 산란 후 개란내부의 CO₂(이산화탄소)가 외부로 방출되며 따라 산란 1주일 후에는 pH 9.1~9.2로 증가한다. 대부분의 미생물 최적생육 pH는 중성영역이므로 이같은 알칼리 영역에서는 쉽게 생존할 수 없는 환경이 되기 때문이다.

난백에는 미생물을 직접 죽이는 항균 물질과 미생물의 생육에 필요한 물질을 차단하여 간접적으로 성장 억제에 관여하는 단백질이 많이 들어있다. 총 난백중에는 0.5%를 차지하는 라이소자입(lysozyme)은 그랑 양성균을 죽이는 작용을 한다. 즉 그랑 양성균의 세포벽에 N-acetylmeuramic acid와 N-acetylglucosamine 사이에 연결된 β-linkage를 가수분해시킨다. 그러므로 개란이 부패할 때에도 그랑 양성균은 라이소자임에 의해 죽이므로 썩은 달걀내에서는 거의 존재하지 않는
다. 또한 계란에는 오브트랜스페린(ovotransferrin)이라는 단백질이 있어 미생물이 이용할 수 있는 금속 이온(특히 Fe²⁺)을 불잡아 주기 때문에 결국 간접적으로 미생물의 생육을 억제한다. 이 외에도 미생물이 이용하는 바이오틴(biotin)을 이용 못하게 잡아주는 에비딘(avidin)과 라이보플라빈(riboflavin)을 잡아주는 오보플라빈 단백질(ovoplavin pro-tein)등이 있고, 기타 ovomucoid, ovoinhi-bitor, ficin-papain inhibitor 등의 단백질이 있다. 전반적으로 난백에는 미생물이 생육하기 힘든 화학적 구성성분으로 이루어져 있다. 심지어 난각막에도 항균성 물질이 존재한다는 일체 보고도 있다.

이와같이 난백의 생명의 씨앗인 난황과 배(胚)를 보호하기 위해 많은 항균물질을 지닐 수 밖에 없었던 신의 결작품이라 할 수 있다.

4. 계란의 오염과 부패미생물

계란의 난각 표면에는 산란직후 외부에서 먼지, 흙, 분노 등이 쉽게 묻을 수 있으므로 미생물이 오염되기 시작한다. 난각표면에는 Micrococcus, Staphylococcus, Bacillus, Escherichia 등 대부분의 그람 양성균과 극히 일부의 그람 음성균으로 오염되어 있다. 왜냐하면 그람 양성균은 계란표면과 같이 건조한 상태에서 생존의 저항성이 강하기 때문에 우점할 수가 있는 것이다.

계란이 부패하기 시작하면 Pseudomonas, Alcaligenes, Proteus, Escherichia, Serratia, Acinetobactor, Citrobactor 등 대부분의 그람 음성균이 자라게 된다. 이미 기술한 바와 같이 난백에는 그람 양성균을 선택적으로 죽이는 라이소자임이 있기 때문에 상대적으로 음성균이 더 잘 자라게 된다. 뿐만 아니라 그람 음성균은 양성균에 비해 영양 요구성이 단순하므로 쉽게 자라릴 수 있고 대부분의 음성균은 저온에서도 잘 자라기 때문에 부패한 계란에서 당연히 우점하게 된다.

5. 계란의 부패증상

부패 미생물에 의해 계란의 조직, 맛, 향기, 색깔 등이 변질되어 상품적 가치를 잃게 되고, 만약 인간이 부패한 계란을 섭취하게 되면 치명적인 해가 된다. 계란 부패의 일반적인 증상은 레시틴(lecithine) 등 난성분의 분해, 얼룩 반점이나 색소 형성, H₂S 생성으로 인한 강력
한 납세, 납백의 용고 등이 일어난다.
부패균별 색소형성을 보면 Pseudomonas
bluoescens에 의해 골과일 납세가 나는 납황
의 녹색부패, Pseudomonas, Alcaligenes등에
의한 무색부패, Proteus melanovogenes에 의
해 심한 부패취를 동반시키는 흑색부패,
Pseudomonas에 의한 분홍색부패, Serratia에
의한 적색부패, Cladosporium이나
Sporiticium과 같은 곰팡이에 의한 녹색, 분
홍색 부패가 수반된다.

6. 위생적인 취급방안

위생적으로 문제가 없는 신선한 계란을 생산
지에서 소비자까지 유통시키려면 우선 산란과
정에서 1차적 오염을 최대한 방지시켜야 한다.
산란 시 주의 환경을 철저히 하여 계란 표면에
가능한 분노, 흙, 먼지 등이 묻지 않아 미생물
의 초기 오염을 최소화한다. 계란을 가능한
하루에 3~4회 약간 수거하여 계란지하실, 냉장에
따른 파란증기를 막고 이물질이 묻지 않도록 한다.
계란 즉시 10℃ 이하에서 12~24시간 뒤에
다음 단계로 처리하거나 포장한다. 온도가
높으면 미생물의 생육이 완성될 뿐 아니라 계
란 내부에서 외부로 파다한 수분의 증발이 일
어나고, 이때 납가막, 농후 및 수양 납백증의
구조, 납황막이 약해지거나 봉괴되므로 미생물
의 침투가 용이해진다.

계란의 소비자까지 유통시키기 전에 계란
표면의 오물은 50ppm의 클로로린(chlorine) 용
액으로 씻어 살균시키고 검란등(検卵等)에 의
해 금이긴 것을 골라내는 작업도 중요하다. 이
어서 유통중 쉽게 파손되지 않도록 포장을 적
당히 잘해야 하며 계란취급 도중에도 파란, 기
심의 변화, 알반의 철판으로 인한 납황이 납백
과 섞이는 현상이 일어날 수 있으므로 신중한
취급이 요구된다.

계란을 저장할 필요가 있을 때는 상대습도를
절대 60% 이하로 내리거나 85% 이상 올리지
말고 통상 70~80%로 유지시켜야 한다. 상대
습도가 낮으면 계란 내부수분의 증발이 일어나
고 반대로 습도가 높으면 곰팡이가 자라서 단
백질을 분해시키는 효소를 분비하기 때문에 납
각 표면의 규트클러이나 납가막 단백질을 분해시
킨다. 따라서 기공이 열리고 Pseudomonas와
같은 그람 음성균이 쉽게 침범할 수 있기 때문
에 주의를 기울여야 한다.

또한 위생적으로 탈감을 취급하려면 생산지
에서 소비자까지 유통경로를 가능한 단축시켜
단시간내에 유통이 되도록 하여야 한다. 왜냐하
면 유통중에 냉장체계시스템에 이루어지지 못
하는 경우가 많고 습도조절이 어렵기 때문이다.

최종적으로 가장에서도 계란을 10℃ 이하에
서 보관하여야 하며 가능한 일주일이내에 소비
하는 것이 바람직하다.

7. 계란의 저장성 증진법

파손하지 않은 계란을 가능한 위생적 처리
로 짧은 시간에 소비시키는 것이 바람직하지만
부득이 장시간 품질을 유지하면서 저장하려면
특수처리를 하는 것이 좋다.

우선 저장실에 CO₂ 가스를 주입시키계란의
내부에서 외부로 호흡작용을 억제시킴으로써
저장을 연장시킨다. 저장실의 상대습도는
70~80%, 온도는 10℃이하로 둔다.
또다른 케란의 저장성 증진방법은 도포(coating) 처리법이다. 가용한 성분의 단일 pH가 증가하지 않은 신선한 케란의 표면에 광물유(mineral oil), 파라핀(paraffin), 면실유 등으로 분무한다. 이렇게 도포함으로써 생람의 저장중 발생하는 수분과 CO₂ 발생을 막을 수 있고 무게감소를 방지하며, Haugh unit의 감소를 방지할 뿐 아니라 외부의 차단으로 미생물의 침입이 억제된다. 피복한 케란에 운송도 조절과 CO₂ 가스를 함께 충전하여 보관하게 되면 저장효과는 더욱 커지게 된다.

8. 맛있는

케란은 자체가 가지는 구조적 또는 화학적 특성으로 말미암아 미생물이 쉽게 침입하기 어려운 식품군중에 하나이다. 그러나 취급 부주의나 초기 미생물 오염이 파도하거나 적절하지 못한 저장조건에서는 부패가 일어나게 된다. 케란에서 부패가 시작되면, 맛, 항기, 색상, 조직감에서 상품성을 완전히 잃게 되고 만약 인간이 그것을 섭취하였을 때에는 식중독 유발 등 건강에 치명적인 해를 가지게 된다.

생제재를 위생적으로 취급하여 최종소비자가 이용하기 위해서는 깨끗한 제란시설과 조심스러운 취급이 요구되고 생산지에서 소비지까지 가능한 단시간에 유통·소비되어야 하며 저장할 때 포장내 적당한 습도와 온도를 유지시켜야 한다. 물론 제란적후에 난각표면을 세척하고 살균시켜 유통시키는 것이 더욱 바람직하며 장기간 저장하고자 할때는 CA저장(CO₂ 가스저장)이나 난각의 도포방법을 쓸 수도 있다.