Study on the Application of Microwave-heating System for Making Bent-wood Furniture(II)*1

- Bending Processing Properties of *Carpinus laxiflora* BL. by Microwave-heating -

Won-Tek So*2

ABSTRACT

Hornbeam trees(*Carpinus laxiflora* BL.) are growing in Korea and have good charateristics such as relatively high density, fine texture, split- resistance, and white colour. However, they have seldom been used as manufacturing materials.

This study was carried out to evaluate the possibility of using hornbeam wood as bent-wood furniture materials. Softening methods were steaming and micro-wave heating. The specimens of 15×15×350mm were used green or air-dried, and were steamed at 100℃ for 20min. or microwave heated for 60 seconds.

The bending processing conditions are showed in Table 3. The minimum solid-bending radii of air-dried wood were 40mm for steaming and 200mm for micro-wave heating, respectively. And that of green wood were 40mm for micro-wave heating.

In conclusion, both of the steamed wood and micro-wave heated green wood showed very good solid bending processing properties, but micro-wave heated air-dried wood were not sufficient for bent-wood furniture.

Keywords: Microwave-heating, bent-wood, hornbeam, black locust

1. 서 론

서어나무는 자작나무과에 속하는 낙엽성 활엽교목으로서 용고지름 1m, 수고 40m 까지 자라는 식물학의 최 중단계인 극상함을 이루는 수종으로 삼림생태계에서 아주 중요한 위치를 차지하고 있다. 중국, 일본 및 우리나라의

*1. 접수 1997년 3월 21일 Received March 21, 1997
*2. 전남대학교 농과대학 College of Agriculture, Chonnam National University, Kwangju 500-757, Korea
강원도 및 황해도 이남의 표고 150~1,000m에 분포하며 개질별로 내보이는 색갈 및 좁은봉포듯한 암회색 또는 회백색의 수피가 줄기의 무서움과를 잃었고 장점이 많아서 종치수로 적합하며 최근에는 전년에 황색 색기와 종기의 특성 때문에 분해의 소재로도 많은 관심을 끌고있다.

목재로서는 결과 길이 곳곳으로 약간 무질하고 깔끔지 않아 흔히 청색하여 오래전에는 직물 짜는 방식을 나무판으로 만들었으며 그 밑에 가구재, 농가재, 피아노재, 운동구, 세공재 등 용도가 다양하며 표고비슷을 제조하는 골목으로도 이용이 가능하다.

세계적인 목재자원의 감소추세와 함께 유엔환경개발회의(UNCED)의 산림의정서에 따라 열대목재명령의 강소, 그리고 점점적으로 불어난 목재가격상승으로 목재공급의 85% 이상을 수입재에 의존하고 있는 우리나라 현실상반완간나무급부정기적인목재수급도 여전히 해외산림자원에 크게 의존해야할 실정이므로 세계 목재 수급변동이 국내목재산업에 미치는 영향은 실로 막대하다고 할 수 있다.

국산재 중에는 재질 및 가공면에서 수입재보다 더욱 우수한 수종이 있음에도 불구하고 가공비가 불량하고 임 목적전에 미치며 소경목 밖에 없다는 인식이 널리받아서 국산재의 이용을 도외시 해왔으나 이제는 조금씩 생산량이 증가하고있다는 우려한 국산재를 선별적으로 나아간 산업에 적극 이용할 수 있도록 노력해야할 때라고 생각되며 이에따라 다양한 개발연구가 밀집되어야할 것이다.

따라서 본 연구에서는 국산활엽수종 중 재질이 우수하고 용도개발이 가능한 서나무목을 대상으로 microwave-heating system에 의한 목재의 온도 및 함수를 변화, 변화처리시간, 음영부등급 등 소재활합공정을 규정하고 오래전부터 관행적으로 사용해 온 종처리목재법과 비교함으로써 새로운 소재활합법으로의 가능성의 진단하여 국산재 이용 목화규가생산공예의 기술적 요구로 국산활엽수종의 활용도를 제고시키는데 목적임을 두고 실시하였라.

2. 재료 및 방법

2.1 실험재료

2.1.1 공시목 준비

본 연구는 전남 삼양자에서 개량하고있는 서나무목 공시목으로서 수량이 적절하고 용도적공 30cm 이상의 생장이 잠재한 수량 47~49년생의 장작목재 2분을 공시목으로 선정 범재관 주 길이 10cm으로 상정하여 총 10개의 원목을 사용하여 실험을 수행하였다.

준비된 원목은 폭2cm 간격으로 원목재단한 후 실내에서 3개월 이상 전연재를 실시하여 함수를 15% 이하로 가감시킨 다음 실험을 제작하였다. 시험품의 처리수는 시험품의 제작공수를 높이고 국고가공을 용이하게 하기 위하여 15×15×350mm의 소형으로 대체가공하여 시험품으로 사용하였다.

2.1.2 온도처리장치

주간반열처리를 위해 사용된 종처리기는 electric-heating system의 스텐레스강철제 4각형 구조를 사용하였다. 종처리기에는 닫기를 하지 않고 종기와 접촉시켰으며 주사선에 공급되지 않도록 열공정이 없도록 운전공정으로 선탄공정을 실시하여 응축수와 전처리를 따라서 측으로 맞아들여 조작하였다. 종처리기의 가열조건은 제1 absorption power Fritz Fig. 1과 같다.

2.2.2 microwave-heating oven

시험의 Microwave-heating에 의한 변화처리를 위해 사용된 전처리기는 스텐레스강철제 4각형 구조를 사용하였다. 전처리기에는 닫기를 하지 않고 종기와 접촉시켰으며 주사선에 공급되지 않는 열공정을 없도록 운전공정으로 선탄공정을 실시하였다. 응축수와 전처리를 따라서 측으로 맞아들여 조작하였다. 종처리기의 가열조건은 제1 absorption power Fritz Fig. 1과 같다.

2.2 실험방법

2.2.1 목재의 재질별성 조사

한국공업규격 KS F22002-2212에 따라 목재의 평균품질, 본질, 변색, 수처리, 변색등, 환경, 환경공정, 전처리, 전처리수와 전처리수의 차이를 측정하였다. 실험은 농업, 환경, 환경공정을 제외한 총 6개의 조건에서 실시하였다. 실험은 재질 및 처리방법은 표 준목재품질관리기준을 따랐으며 목재의 함수 및 수처리방향에 대한 영향을 최소화하기 위해 적절 온도조건에서 조건처리를 실시하였다.

시험방식은 항목에 따라서 변경되었으며 평균 10
번복으로 기준하였다.

2.2.2 목재의 재질별성 실험

2.2.2.1 목재의 재질별성 조사

적정변형처리시간을 산출하기 위하여 가열변형처리 종실험의 내부온도변화를 측정하였으며 온도측정기구는 건전식 온도계기구를 사용하였다. 사용된 thermos
meter의 성능은 온도측정범위 -220~0℃, 정도 0.1% ± 1digit이이며 CA형 온도계기구가 부착되어 있다. 온도측정은 작업명 단면의 중앙에 적절 2.3mm의 구
2.2.2.2 침가공 裝置

연화처리된 시험편은 여러가지 곡물병기로 찍 수 있도록 간단한 수가공장치를 고안하여 찍가공하였다. 침가공세트는 작업대 위에 4조를 설치하고 침가공 형틀의 곡물반경은 20mm에서 800mm까지 단계적으로 37 개를 제작준비하여 사용하였다. 침가공시 하리지의 인장 과파를 피하기 위하여 인장대철을 25mm에 설치하였으며 대철의 재료는 1.2mm 스텐레스 강철과 0.5mm 스프링 강철을 사용하였다. 스텐레스 강철, 대철은 침가공 후 약간씩 늘어나거나 변형되므로 다시 원형으로 수정해 주어야하는 단점이 있었으나 금변에 최초로 작용한 스프링 강철체 대철은 침가공후에도 전면 변형되지 않아 반복사용이 매우 용이하였다. 침가공장치의 형장은 (1990)의 논문에 발표된 것과 동일한 형틀을 사용하였다.

2.2.3 蒸煮處理에 의한 整材침가공 특성조사

Steamling vat에 가열해 담개를 끼우고 격렬하게 물 을 붓어서 증기를 충분히 김길시킨 후 시험편을 넣어서 100℃ 상업의 포화가열증기를 이용하여 증자연화처리를 실시하였다.

사용된 시험편의 합수율은 12%이하로 조심한 기준목제이며 가열연화된 시험편은 침가공장치를 사용하여 기준곡물반경을 중심으로 전후 20mm간격으로 침가공을 실시하고 그사용의 침가공상태를 평가하여 적정곡물반경을 구명하였다.

2.2.4 침가공성의 평가

곡목의 침가공상 평가는 가공후의 표면상태를 관찰하면 일본 임업시험장의 평가기준(1952)을 보완하여 다음과 같이 4단계로 구분하고 각 곡물반경에 대해

<table>
<thead>
<tr>
<th>Log No.</th>
<th>Diameter (cm)</th>
<th>Length (cm)</th>
<th>Age (year)</th>
<th>Bark (mm)</th>
<th>Sapwood (mm)</th>
<th>Ann. ring (mm)</th>
<th>Latewood (mm)</th>
<th>Eccentricity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>37~28</td>
<td>150</td>
<td>49</td>
<td>Max. 5</td>
<td>IS</td>
<td>3.0</td>
<td>10</td>
<td>1.6</td>
</tr>
<tr>
<td>2-1</td>
<td>35~30</td>
<td>150</td>
<td>47</td>
<td>Max. 4</td>
<td>IS</td>
<td>3.1</td>
<td>10</td>
<td>7.4</td>
</tr>
<tr>
<td>2-2</td>
<td>32~27</td>
<td>28</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>29~22</td>
<td>18</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>17~17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Data except diameter came from DBH, IS = insignificant.
보이고 있다.

放射組織은 횡단면과 방사면에서는 식별되지 않지만, 같은 면에서 나뭇결무늬를 형성하는 하지만 연철형성이 두각하지 않고 주축면과 나사면이 거의 없어서 매우 위미하여 실용상 나뭇결무늬의 이용은 불가능하다. 마찬가지로 정목재로서의 통조목리도 육안차별은 가능하나 목리의 이용강이 없다.

주체목은 5%단위 측정시 10%정도를 나타냈으며, 신생기생은 비교적 적은 편이었다.

3.2 木材의 物理 機械的 性質

서어나무의 기초재질을 파악하기 위하여 비중, 수축률, 양측강도, 휘성도, 휘연계수, 축력강도 및 전단강도 등을 측정하였으며 그 결과를 종합한 평균치는 Table 2와 같다.

서어나무는 심변재 색상구분이 안에서 변색까지 시험은 수과측 4cm 범위내에서 채취하고 심변재 시험은 수에서 방사방향으로 증가부위에서 채취하였다.

3.3 木材温度變化

목재를 손상없이 검사하기 위한 전처리로써 기재에 의한 열화처리를 실시하여 목재의 허용을 증대시키며 이

때 기열전에 따른 목재내부의 온도변화를 조사하여 적정 연화처리시간을 산출하였다.

증기압실시 서어나무의 목재내부온도변화는 Fig. 1과 같이 증가초기 2분 목재내부온도 89℃에서는 급격히 상승하였고 그후 변화되어 6분경에 최대온도 99℃까지 상승하였다. 또한 증가완료 후 방기시간에 따른 변화의 내부온도변화는 Fig. 2에서 보이는 것처럼 목재내부온도가 37℃로 5분까지는 급격히 내각되었으나 점차 변화되어 20분후에는 가열전 온도로 회복되었는데 역시 온도상승에 비해 비교적 완만하게 진행되었다.

증기압실시 최대온도에 이르는 소요시간은 6~7분 정도이다 목재의 소화효과를 높이기 위해 적정 연화처리시간을 20분으로 설정하였다.

Saito 등(1952)은 목재의 내부온도와 연화상에 대한 연구에서 목재의 내부온도가 80℃이하에서는 연화효과가 현저하게 저하됨을 지적한바에 따라 기열화소 후 휘가공 작업과정에서 자연상각되는 경향권선(Fig. 2)으로부터 서어나무의 초기온도에서 연화처리 한계온도인 80℃까지 열작하는 데 소요되는 시간을 산출해보면 각각 1분 정도에 불과하며 목재작업의 공예시간이 매우 짧은 문제점이 노출되었다. Fig. 2의 X축 원표어(=부분)는 목재를 10분간 기열한 것을 의미하며 기열 후 방치시간 개시점

Fig. 1. Internal temperature of hornbeam wood by steaming.

Notes : T0 : temp. of steam, T1 : temp. of wood in end 1, T2 : temp. of wood in end 2.

Fig. 2. Internal temperature of hornbeam wood by working time soon after steaming.
울 기준(원점)하였기 때문에 그래프상 ‘수치’로 표시되었으며 이러한 표현은 Fig. 5와 Fig. 6도 마찬가지다.

Microwave가열연화시 가열시간에 대한 목목의 내부온도변화는 Fig. 3과 같이 가열시 간 40초까지는 거의 직선적으로 증가하였으며 그 이후 다소 온도상승율이 둔화되는 경향을 나타냈다.

목재온도 상승경과는 가열시간 약 45초일 때 이미 100℃에 도달하고 1분경과시 112℃이상 상승하였으나 제1보의 아까시나무보다는 목재내부온도 상승속도가 매우 떨어졌다.

Microwave로 가열한 목목을 실온의 대기상태에서 방치했을 때 방치시간에 따른 내부온도변화는 Fig. 4와 같이 전체적으로 곡선적 하강경향을 나타내고 있으나 초기에는 거의 직선적으로 냉각속도가 빠르 진행되었다.

60초동안 가열한 목재는 2분, 70초동안 가열한 목재는 3분이후에 목재내부온도가 연화효과 영향이용 온도 80℃이하로 떨어지는 것으로 나타났다. 즉 작업중 외부온도하강을 예상할 때 작업시간 2~3분이 경과하면 목재온도가 80℃이하로 떨어져서 연화효과의 현저한 상실이 예상되므로 목목작업이 적어도 3분이내에 완료되어야할 것이다.

따라서 증가가열이나 microwave가열 모두 목재의 연화가열을 완료한 후 압채함가공을 하기까지 운반 및 가공

Fig. 3. Internal temperature of hornbeam wood by microwave-heating.
Notes: END 1 : temp. of wood in end 1.
END 2 : temp. of wood in end 2.

Fig. 5. Moisture content of hornbeam wood by steaming.
Notes: 5min. : steamed for 5min.
10min. : steamed for 5min.
20min. : steamed for 5min.
30min. : steamed for 5min.

Fig. 4. Internal temperature of hornbeam wood by working time right after microwave-heating.
Notes: 60sec. : microwave-heated for 60sec.
70sec. : microwave-heated for 70sec.

Fig. 6. Moisture content of hornbeam wood by working time soon after microwave-heating.
Notes: 20sec. : microwave-heated for 20sec.
40sec. : microwave-heated for 40sec.
60sec. : microwave-heated for 60sec.
70sec. : microwave-heated for 70sec.
3.4 목재의 수분율 변화

중기기법과 microwave기법에 의한 치료처리시 서아나무의 합수율변화를 조사한 결과 각각 Fig.5 및 Fig.6과 같이 나타났다.

먼저 중기기법 치료시간을 5분에서 30분까지 4단계로 구분하여 변화한 결과 Fig.5에서 보이는 바와 같이 치료후 합수율 증가기드는 5.3~8.7%정도로 약 14시간으로 주어지는 2배이상 증가하였다. 중간 합수율은 초기에 급격히 증가하다가 점차 완화되는 과정이며 microwave기법의 경우 비교적 고가의 영향은 덜하다는 경향이 나타났으나 microwave기법의 간부 절을 위해 증가일정과는 그 외에도 나타났다.

가열처리목재를 대기상태에 방치하였을 경우 합수율 감소경향은 목재운전의 영향과 함께 초기 3분까지 급격히 감소하다가 15분경에는 거의 안정되었으며 이때의 합수율은 변화된 결과에 비해 2.3~5.4%정도 높은 상태를 유지하고 있었다.

즉 서아나무는 약 14시간으로 비교적 상호작용 합수율 증가와 치료 후 부착성의 변화가 일정하게 높은 특성을 가지고 있었다. 따라서 중기기법 시 수분흡수 때문에 수분중에 대치중 유동성 증가를 고려하여 목재의 치료적용을 적정한 수준으로 조정하는 것이 필요하며, 합수율을 낮추지 않게 하여 합수율을 조정하는 것이 필요할 때는 후간조의 실험적 조정의 방법이 바람직하다고 생각된다.

서아나무의 microwave기법과 시나пон, 시나와 시간에 따른 합수율 상승 및 하강변화를 조사한 결과는 Fig.6과 같이 치료적용 목재의 합수율은 0.3~5.5%정도 감소하였으나, 치료시간변동은 치료시간이 길수록 초기 합수율 감소량이 다르며 시나포트로 사용적 건소성도 감소하였으며 합수율이 안정되는 시간은 증가보다 15분보다 16분이 적었다. 현란물질 5분을 진행하여 안정되고 있고 이때까지의 총합수율감소량은 0.6~5.8%에 이르고 있다.

증자처리에서는 연화기간중 수분증가량의 합수율 오해를 목재함수율 감소에 의하여 목재함수율 증가하는 측면에서 성과적으로 장시간 증자처리는 저장은 합수율감소량을 줄이거나 미리 치료된 목재의 합수율을 예상하는 합수율 증가량만큼 낮게 건조할 필요가 있는 반면에 microwave 처리에서는 치료전보다 합수율이 감소하므로, 치료할 합수율을 상당히 낮게 조절하는 등 좋은 제품의 이용성을 보여 주기 위한 증가물질 목재의 합수율을 조절할 필요가 있다고 본다.

3.5 목재의 축척기공성

3.5.1 Steaming에 의한 흡차공성

서아나무의 steaming에 의한 소재적기공성은 Table 3의 기본조건을 적용하여 흡차공성을 실시하였으며 얻어진 결과는 Table 4와 같이 측정되었다.

서아나무의 중자목재조어 Table 4에서 보는 바와 같이 흡수평 değ어 80mm에서는 5개의 곡률이 모두 A급으로서 전혀 합용파괴가 없고 거의 합용주름도 발생하지 않음을 만한 우수한 합가공성을 보였으며 단계적인 60mm에서도 역시 3개는 A급, 2개는 B급으로서 합용주름이 일부 발생하였으나 합용파괴는 발생하지 않았다. 또한 40mm의 곡률간에서는 A급 1개, B급 2개로 양호하여 합용파괴나 발생한 C급은 1개를 제외한 나머지 4개의 곡률이 A, B급으로서 합가공성으로 판정되었다.

곡률간에 40mm에서도 비교적 합가공성에 양호하며 40mm까지만의 곡률간에서도 검사조건이 가능하다고 판단되며 따라서 서아나무의 r/t ratio는 2.67이하로서 합가공성이 매우 우수한 그룹에 속한다고 할 수 있다.

중마법의 일반적으로 가열법을 사용하는 것과 비교용으로 본 실험이는 체계를 대상으로 중마합가공을 실시하여 목재체적기공성을 조사하였으며 그 결과를

Table 3. Basic conditions of softening for solid-wood bending processing.

<table>
<thead>
<tr>
<th>Heating method</th>
<th>Specimen</th>
<th>M.C. (%)</th>
<th>Annual ring placement</th>
<th>Softening temp. (℃)</th>
<th>Softening time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steaming</td>
<td>Heartwood</td>
<td>12±1</td>
<td>Flat-grain</td>
<td>99±1</td>
<td>20</td>
</tr>
<tr>
<td>Microwave</td>
<td>Heartwood</td>
<td>12±1</td>
<td>Flat-grain</td>
<td>112±2</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 5에 표시하였다.

서아남 생체의 촉자함가공시 곡률반경 80mm에서 는 A, B급이 각각 4개, C급이 1개로서 매우 양호하게 함가공되었으며 60mm 반경에서는 A급, B급이 각각 2 개로서 B급이상이 4개로서 함가공 가능으로 판정되었다. 또한 40mm 반경에서는 극성한 압축파괴를 보인 C급과 인장파괴를 보이는 D급이 각각 1개씩 발생하였으나 B급이상이 3개로서 역시 함가공 가능으로 판정되면서서 서아남 생체의 함가공 곡률반경 유도는 기간제에 따라 가장 40mm로 구성되었다. 다만 생체의 경우 기간제 보다 체질이 뿌이하여 압축함가공시 일부 부분이 오스러 지는 경향이 일부사례에 발생하였다.

결과적으로 서아남은 중기가열에 의한 속목제조시 기간제와 함가공의 차이가 없는 것으로 나타났으며, 일반적으로 작은 곡률로 함가공할 경우 중자함가공시 기간 상태까지 건조시켜야하는 불편이 있었으나 본 실험수
중인 서아남은 생체의 속목제조도 매우 양호하여 속목 제조물 미리 건조해도할 필요가 없다고 할 수 있다. 이는 특히 함가공후 용을 안정시키기 위해 고온에서 장시간 후건조가 연속되며 이때 곡률의 합수율이 10%이하까지 건조되므로 생체를 직접 함가공할 수 있다면 제조공정상

3.5.2 Microwave-heating에 의한 함가공

서아남의 microwave가열에 의한 산해합가공성도

자각자식으로 Table 5의 기본조건을 적용하여 기간제의 곡
목가공을 실시한 결과 Table 6과 같이 측정되었다.

서아남 기간제의 microwave가열시 곡률반경 300mm

에서 C급 압축파괴가 1개 있었으나 함가공이 양호하였으

Table 4. Solid-wood bending processing of hornbeam air-dried wood by steaming.

<table>
<thead>
<tr>
<th>R.O.C tested (mm)</th>
<th>No. of specimens graded in bending</th>
<th>Bending possibility</th>
<th>Minimum R.O.C. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>80</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: R.O.C. : Radius of curvature.
A : without bending failure.
B : with minor compressive failure - negligible for practical use - in the concave side.
C : with remarkable compressive failure.
D : with breakage or tension failure.
PS : possible. IS : impossible.

Table 5. Solid-wood bending processing of hornbeam green wood by steaming.

<table>
<thead>
<tr>
<th>R.O.C tested (mm)</th>
<th>No. of specimens graded in bending</th>
<th>Bending possibility</th>
<th>Minimum R.O.C. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>80</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: see the note of Table 4.

Table 6. Solid-wood bending of hornbeam air-dried wood by microwave-heating.

<table>
<thead>
<tr>
<th>R.O.C tested (mm)</th>
<th>No. of specimens graded in bending</th>
<th>Bending possibility</th>
<th>Minimum R.O.C. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>300</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>150</td>
<td>4</td>
<td>1</td>
<td>IS</td>
</tr>
</tbody>
</table>

Notes: see the note of Table 4.
며, 200mm에서는 C급 암촉과 D급 인장과가 각각 모두 1개씩 있었으나 역시 B급이상이 3개로서 획득이 가능할 것으로 판단되었다. 그러나 150mm에서는 C급 4개, D급 1개로서는 모두 획득이 극단적이었다. 따라서 이 때의 가장 구형은 200mm로 결정되었으며 B급 구목보다는 C급 구목의 시판 도덕률에 해당한다. 또한 마이크로바에 의한 획득이 가능할 것으로 나타났다. 이 중 200mm구목의 획득은 획득이 가능한 것으로 판정되었으나 C급 구목의 횝득이 심각한 D급 구목이 완전히 접촉되는 등 횝득상태가 상당히 불량하였으며 특히 횝득에서는 횝득상태가 매우 부드럽고 금발한 균형상태를 나타내는 반면에 마이크로바가 일공 횝득조서시에는 소재가 동결되고 유연하게 움직였고 투명한 상태로 각각을 이루는 각선결상의 특징을 나타내었다.

중사처리시에는 처리후 횝득수율이 다소 증가하고 고온의 습윤증기로부터 열과 수분을 흡수하여 이중연화과를 충분히 나타내므로 횝득조차가 용이한 반면에 마이크로바처리시에는 횝득의 횝득수율이 오히려 감소하게 되고 특히 표면층이 침윤적으로 관찰되어 횝득시 횝득과의 시각명이 되며 횝득면적과의 관계 모양으로 보이며 단자의 관리가 중요하다고 보여진다. 이와같은 표면층의 급속한 수분분율을 억제하기 위해 시험관의 외부를 비닐산으로 의해서 고압해 보기도 하였는데 비닐판이 부식적으로 녹아버려서 환경 밀폐되지 않았으나 시험관의 표면이 약간은 습한 느낌을 주고 횝득상도 조약 연한감을 감지할 수 있었다. 따라서 마이크로바 혹은 마이크로바는 조각을 초기획득율을 적어도 가열중 급속화되는 양만복은 높게 조정하는 것이 가장적하다고 보이나 무엇보다도 마이크로바가열중 표면층의 급속한 수분분율을 억제하기 위한 조치가 행해지지 않는 한 횝득상의 마이크로바 횝득은 곤란하다고 생각된다.

중합적으로 검토해본 결과 중사처리시에는 이나나무 금관과 횝득층의 횝득수율을 나타내었으며 마이크로바에서는 횝득층을 사용할 경우 횝득방향 200mm에서 횝득수율이 불량하였다.

4. 결론

이나나무(Carpinus laxiflora Bl.)은 자작나무과에 속하는 국산 품종으로서 갈절과 훈련하여 임산부질서에 따라 다양한 형태가 나타난다. 땅과 같은 지반이 강하여 충분히 활용할 수 있는 우수한 다목을 지니고 있으나 아직까지 전히 이용되지 않고 있으며 방층가능 자체의 형성

1. 사이나나무는 사이나나무가 매우 어려하여 목재에 의한 나뭇잎 무늬를 이용할 수는 없으나 제재에 깊게 하고 전층적으로 밝은 색조를 띠고 있으며 비교적 양호한 비중과 강도특성을 나타내고 가구제조 등에 이용가능하다.

2. 목재내부온도 100℃에 이르는 변환처리시간은 증가폭이 60분이 소요되었으나 마이크로바 목재에서는 45초당에 도달하였다.

3. 변환처리기의 목적 횝득수율변화는 증가목재 가열 시간에 비례하여 5.3~8.7% 증가한 반면에 마이크로바목재에서는 0.3~5.5% 감소하였다.

4. 변환처리목재를 대기상태에 징발하였을 경우 증자 처리에서는 목재온도의 명각과 함께 증가된 횝득율이 2.3~5.4% 수증기 확인되는 경향을 보였으나 마이크로바처리에서는 처리후에도 계속 횝득율이 감소하여 전층수율감소량 0.6~5.8%이었다.

5. 사이나나무 증자목재방법에 의한 최소 횝득방법은 각각의 횝득 전에 모두 횝득관 40mm로서 매우 우수한 횝득특성을 나타내었으며, 방층을 횝득세로 사용할 경우 일반적으로 행해지는 횝득음직관 조정공정을 생략할 수 있는 장점이 있다.

6. 사이나마 마이크로바처리방법에 의한 각각의 횝득관 200mm로서 횝득 범위에 의한 횝득특성 이 매우 불량하였으며 각각의 횝득관을 대상으로 한 마이크로바 횝득제조는 부적합한 것으로 판단된다.

참고 문헌

Sta.: 1~24

11. 山本晴之, 阿部晴朗, 成本照行, 近藤龍平. 1952. 木材の曲げ割の限界実験. 木材工業 7(5): 24~225

12. 小島昌司. 1967. 曲木. 木材工業 22(10): 39~41

14. 蘇元澤. 1990. 酸ガス製造の素材各種及び製造条件にあわせた研究(1) - 蒸煮に伴う素材の加工性 - . 木材工学 18(2): 8~15

15. 蘇元澤. 1995. 國産材 曲木家具製品に用いられる木材加热处理的研究(1) - Microwave-heatingによる加工性 - . 木材工学 23(3): 73~81

16. 有用闊葉樹材製研究班. 1989. 有用闊葉樹材の材質(VI) - 萬年木外4樹種の性質 -. 林業研报 39: 1~23