H₂ Production by a Purple Sulfur Bacterium Blooming in Lake Kaiike

Sang-Wook Moon* and Michiro Matsuyama

Graduate School of Marine Science and Engineering, Nagasaki University, Nagasaki City 14-1, Japan

Abstract: H₂ production by *Chromatium* sp., a large purple sulfur bacterium blooming in lake Kaiike, under various environmental conditions was examined. *Chromatium* sp. produced H₂ only in the presence of light and H₂S. Maximum H₂ production (0.01 μmol/hr/(mg dry cell weight)) was obtained in the solution of 20 mg H₂S-S/l under low light intensity (1000 lux) at 30°C. H₂ production was severely inhibited by the presence of N₂ or NH₄⁺. The rate observed for *Chromatium* sp. was relatively low compared to that of other phototrophic bacteria. *Chromatium* sp. is probably a most potent H₂ producing species in lake Kaiike, since the bacterium readily produced H₂ photoautotrophically even at low light intensities by the application of suboptimal H₂S concentrations. Based on the photoautotrophic characteristics of bacterial H₂ production, it is suggested that *Chromatium* sp. can be an economic and practical species for biological H₂ production system, particularly in temperate region.(Received May 30, 1996; accepted November 21, 1996)

Introduction

Lake Kaiike is located at the Kamikoshiki island, Kagoshima Prefecture, Japan, and of which surface area and maximum depth are 0.15 km² and 11.6 m, respectively.¹⁾

The lake is conspicuous by its two environmental characteristics. One is thermal stratification which leads to two vertically different environments, oxic and anoxic one, and the other is the presence of H₂S-rich water be low the mid-depth of the lake.¹⁾ This physically characteristic conditions may be deeply related to the formation of the interesting biological community found in Lake Kaiike,²⁻⁴⁾ and which gives an attraction for studies of biological processes, e.g., bacterial photosynthesis, N₂ fixation, and H₂ production, resulting from the interrelationship between biological community and physicochemical environment.

Chromatium sp. , a large purple sulfur bacterium, is blooming at an upper boundary of the H₂S layer in the lake throughout the seasons. The dense population of Chromatium sp. at the mid-depth of the lake is called the bacterial plate.⁵⁾

Most phototrophic bacteria can produce large quantities of H₂ when grown photoheterotrophically and supplied with certain amino acids, e.g., glutamate, as nitrogen source.⁶⁾ This H₂ production by anaerobic phototrophic bacteria in the light is now known to be performed by the action of nitrogenase.⁷⁾

In our previous study, it is observed that *in situ* H₂ production by *Chromatium* sp. is mediated by the nitrogenase.⁸⁾ More detailed information on how H₂ is produced by *Chromatium* sp. under experimental conditions are not yet known.

A number of environmental factors may affect the energy-dependent H_2 production by the phototrophic bacteria. Most important factors affecting photoproduction of H_2 would be light and proper inorganic or organic compounds as electron donors. N₂ reduction by *Chromatium* sp. is shown to be dependent on both light and H_2S . In addition, NH_4 and N_2 are known to be inhibiting factors for the photoproduction of H_2 .

 H_2 can be biologically produced by solar energy, and has a great significance from the fact that H_2 is utilizable as an alternative fuel source. ¹³⁾ *Chromatium* sp. isolated from the lake Kaiike is capable of converting solar energy into H_2 . ⁸⁾

In the present study, the characteristics of H_2 production by *Chromatium* sp. and the bacterial differences in response to environmental factors are established.

Materials and Methods

Chromatium sp. was isolated from the bacterial plate of Lake Kaiike on May 1983.⁴⁾ The bacterium was only similar to Chromatium buderi of members of Chromatiaceae family in requirement for vitamin B₁₂ as well as in its size, shape, motility, plemorphism, lack of for-

Key words: Purple sulfur bacterium, Chromatium sp., H2 production, Environmental conditions, Lake Kaiike.

^{*}Corresponding author

mation of aggregates, appearance of both single cells and cell suspension and requirement for NaCl.^{4,14)} However, in the point of different time-serial change of cell size during growth, different absorption spectrum of living cell suspension, and different use of sulfur and carbon compounds, the bacterium was regarded as different species from *Chromatium buderi*., and thought to be a new one of Chromatiaceae family.⁴⁾

In this paper, a classification of strain, if necessary, will be specified in the text for making distinction between *Chromatium* sp. of Kaiike strain and the other member of Chromatiaceae shown in the following text, e.g., *Chromatium* sp. of Miami PBS 1071. If there is no specification about a strain of *Chromatium* sp., it will be regarded as one of Kaiike strain.

Chromatium sp. was grown at the conditions of 1000 lux, 25°C, pH 7.9~8.4 and 130 mg H₂S-S/*l* with the medium of Pfennig.¹⁵⁾ NaCl and MgSO₄·7H₂O in the medium were increased to 25 g and 3.5 g/*l*, respectively, for marine habitat of the bacterium, and the trace element solution of SL 7 was replaced with a solution of SL 10.¹⁰⁾

 NH_4^+ -grown bacterial cells in the exponential growth phase were harvested by centrifugation (670×g, 15 min), and the pellets were resuspended with NH_4^+ -free medium (3 times), and were used for the following experiment.

A 50-ml bacterial suspension prepared by the above procedure was poured into a 100-ml syringe. Then, 50 ml of gas mixture of C₂H₂ and Ar (C₂H₂ 20%, Ar 80%, V/V) was injected into the syringe, and was placed into a waterbath. Syringes in waterbath were gently agitated and rotated manually at intervals for ameliorating the gas exchange between the gas and the liquid phases.

In the absence of NH₄⁺, the formation of H₂ and C₂H₄ was concurrently observed from the gas mixture (C₂H₂ 20%, Ar 80%) under the anaerobic condition in the light, and rates of which were shown to be distributed in about an equal molar ratio.⁸⁾ This reflects that the H₂ production is catalysed by nitrogenase.¹⁶⁾

Ilumination was provided by 100-W incandescent lamps, perpendicularly positioned over the waterbath. A black nylon net was used for obtaining different light levels (0~7000 lux) by rolling around syringes.

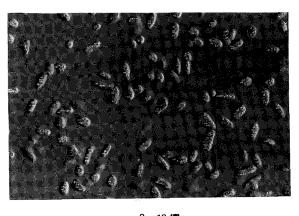
Water temperatures were adjusted to 10 to 37°C, and H_2S concentration in the bacterial suspension was adjusted by addition of H_2S solution (pH 7.0), reaching the final concentrations of 0 to 100 mg H_2S -S/l.

Each NH_4^+ concentrations in suspensions was adjusted by addition of NH_4^+ standard solution (pH 8.0). N_2 content in a gas phase of syringe was prepared by diluting N_2 with Ar gas.

All the detection of H₂ produced was done with a semi-conductor detector-gas chromatograph (Sensortec.

Inc. Ltd.). Known volume of sample from the gas phase was collected using a microsyringe, and was analyzed and quantitated. The limit of detection of H_2 was 2×10^{-7} moles/ l_2

 $\rm H_2$ production rates were calculated from the values of $\rm H_2$ formed as a function of time, using linear regression analysis. This was based on dry weight of the bacterial cells containing intracellular sulfur globules, determined by centrifugation of bacterial suspensions, drying at 105°C for 2 hrs, and keeping in a desicator to reach room temperature.


Field work was done on May 21, 1996, for obtaining the vertical profiles of Lake Kaiike.

Sampling was done at a central point of the lake. Water temperature was measured with a guaranteed glass thermometer. Salinity was measured with digital salinometer E-202 (Tsurumi Seiki Co. Ltd.). Dissolved oxygen concentration was measured by the Winkler titration method. Hydrogen sulfide concentration was measured by the iodometric titration of CdS precipitate, which was formed by adding CdCO₃ suspension into water sample.¹⁷⁾ Bacterial number was microscopically counted using a Thoma hemacytometer.

Results and Discussion

Fig. 1 shows the microphotograph of *Chromatium* sp. containing sulfur globules. The bacterial cell was ovoid to rod-like in shape, and cell dimensions were 3.5 to 8.0 by 5.5 to $11.0~\mu m$ during the exponential growth phase.

Figs. 2 and 3 show the environmental conditions of temperature, salinity, O₂ and H₂S concentrations of Lake Kaiike and vertical distribution of two predominant species of the bacterial plate in the lake, respectively. Formation of strong stratification, mainly attributed to vertical changes of temperature and salinity, and the presence of light and H₂S at the depth of just beneath the stratified layer offered an habitat of *Chro-*

0 10 /

Fig. 1. Photomicrograph of *Chromatium* sp. at the exponential growth phase. Intracellular sulfur globules were observed. Scale bar is $10~\mu m$.

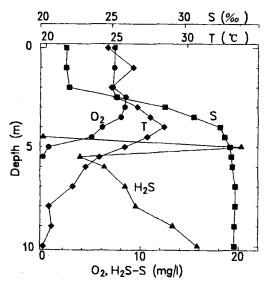


Fig. 2. Vertical profiles of salinity (%), temperature (°C), O_2 and H_2S -S concentrations (mg//) in lake Kaiike, on May 21, 1996.

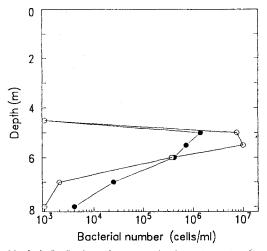


Fig. 3. Vertical distribution of two predominant bacteria at the bacterial plate of lake Kaiike, on 21 May 1996. One was phototrophic bacterium, *Chromatium* sp. (●—●), and the other was chemolithotrophic bacterium, *Macromonas* sp. (○—○).

matium sp..

Fig. 4 shows H₂ production rate of *Chromatium* sp. at light intensities of 0 to 7000 lux. The optimum light condition was 1000 lux. Decrease in rate by light was observed at more than 2000 lux, while no apparent H₂ production was observed in the dark. H₂ production by *Chromatium* sp. was shown to be light-dependent.

Effect of H₂S upon H₂ production rate is shown in Fig. 5. Different addition of neutralized H₂S solution to suspensions of *Chromatium* sp. showed different H₂ production rates (Fig. 5). However, H₂S concentrations of 20 to 100 mg H₂S-S/l gave no apparent differences in rate of H₂ production. Without H₂S addition, *Chromatium* sp. could not produce H₂.

Effect of temperature upon H₂ production is shown in Fig. 6. At the broad range of temperatures H₂ was pro-

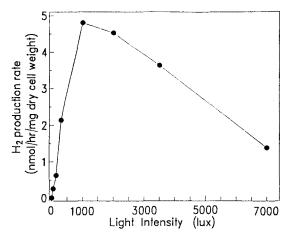


Fig. 4. H_2 production rate of *Chromatium* sp. at varying light intensities (0 to 7000 lux). The highest rate, 5 nmol/hr/(mg dry cell weight) was obtained at 1000 lux. pHs of the bacterial suspensions were 7.9 and 8.4 (0 to 2000 lux, pH 8.4; 3500 to 7000 lux, pH 7.9). The suspensions were incubated at 25°C. The bacterial number in the suspension was 2.7×10^6 cells/ml, corresponding to 0.061 mg dry weight/ml.

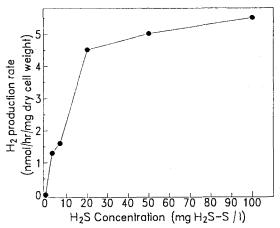


Fig. 5. H_2 production rate of *Chromatium* sp. at different H_2S concentrations. The highest rate was 5.5 nmol/hr/(mg dry cell weight) at 100 mg H_2S -S/l. At 20 to 100 mg H_2S -S/l little difference between rates was occurred. The bacterial suspensions were incubated at 25°C and 1000 lux(0 to 20 mg H_2S -S/l, pH 8.3; 50 to 100 mg H_2S -S/l, pH 8.4). The bacterial number was 2.1×10^6 cells/ml, corresponding to 0.048 mg dry weight/ml.

duced, however, most vigorously at 30°C. At more than 35°C, an abrupt decrease in H_2 production was occurred (Fig. 6).

Figs. 7 and 8 show that H_2 production by *Chromatium* sp. was severely inhibited by NH_4^+ and N_2 , respectively. The H_2 production rate was decreased by increasing NH_4^+ addition (Fig. 7). H_2 was not detected when NH_4^+ was added as 700 μ M. 45% of maximum H_2 production rate (Control) was obtained at 100 μ M of NH_4^+ .

Increasing N_2 concentrations decreased the rate of H_2 production by *Chromatium* sp. (Fig. 8). H_2 production was performable even in the presence of 100% N_2 , while nearly a half of the maximum production rate

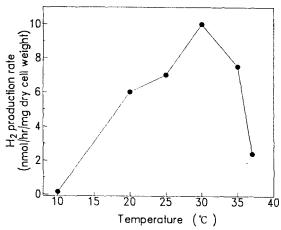


Fig. 6. H₂ production rate of *Chromatium* sp. at different temperatures. Under the conditions of 30°C, 1000 lux, and 100 mg H₂S-S/*l*, the maximum H₂ production rate, 10 nmol/hr/(mg dry cell weight), was obtained. Light was illuminated as 1000 lux. pH of the suspension was 8.3 at 10°C, and at the other temperatures pH was 8.4. The bacterial number was 2.0×10⁶ cells/m*l*, corresponding to 0.045 mg dry weight/m*l*.

(Control) was obtained under a gas phase of 3% N₂ (Fig. 8). H₂ production and the N₂ reduction are catalysed by the same enzyme, nitrogenase, and the inhibition of N₂ upon H₂ production is known to be competitive.⁷⁾ However, in considering that H₂ was produced even under a gas atmosphere of 100% N₂ (Fig. 8), H₂ seems to be indispensably produced whenever the nitrogenase reaction is performed.²⁶⁾

Phototrophic bacteria show a light-dependent H₂ production when grown photosynthetically with proper inorganic or organic compounds as carbon or nitrogen sources in the absence of exogenous NH₄^{+,16,27,28)} However, in nonphototrophic bacteria, the energy source or electron donor for H₂ production (nitrogenase-mediated) is supported from only organic compounds.²⁹⁾ Nitrogenase-mediated H₂ production by some diazotrophic bacteria and their various production rates are shown in Table 1. The production rate of *Chromatium* sp. was smaller than that of other bacteria.

Most phototrophic bacteria shown in Table 1 produce large quantities of H₂ from a variety of organic compounds. Light for their growths is mostly supplied with around 5000 lux. As stated above, *Chromatium* sp. produced H₂ maximally at a light of 1000 lux and H₂S of 20 mg H₂S-S/l or more under inorganic growth conditions. *Chromatium* sp. is shown to have not much availability to use carbon compounds, except for limited organic compounds such as fructose and lactate, for the growth.

In marine *Chromatium* sp., Miami PBS-1071, grown on a Pfennig's medium containing organic acids at a light intensity of about 8000 lux, it was shown to have a capability of producing larger quantity of H₂ than the bacterium. ^{21,30)} Miami PBS 1071 also showed its max-

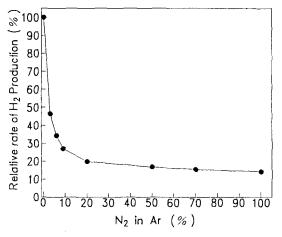


Fig. 7. Effect of NH_4^+ upon H_2 production rate of *Chromatium* sp.. NH_4^+ was added to bacterial suspension at each final concentrations specified in the Fig. Control suspension was not added with NH_4^+ . Experimental conditions of light, temperature, pH and H_2S were 1000 lux, 25°C, pH 8.3 and 100 mg H_2S -S/l, respectively. The bacterial number was 4.5×10^7 cells/ml, corresponding to 1.02 mg dry weight/ml.

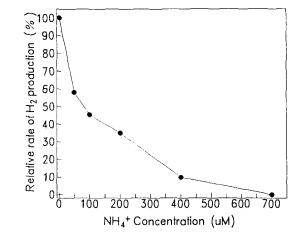


Fig. 8. Effect of N_2 partial pressure upon H_2 production rate of *Chromatium* sp.. N_2 was added to the Ar gas phase of the suspension at each final concentrations specified in the Fig.. Final volume of the gas phase was adjusted to 50 ml. Experimental conditions as in Fig 7. The bacterial number was 4.5×10^6 cells/ml, corresponding to 0.102 mg dry weight/ml.

imum H_2 production at temperatures of 35 to 37°C, while no H_2 was produced at a temperature lower than 20°C.²¹⁾ Miami PBS 1071 was considered to have high growth potential and to be the most potent species for the H_2 production in coastal marine environment of tropical or subtropical places.^{21,30)}

In aspect of light, *Chromatium* sp. of Kaiike strain can produce H_2 , even with a small quantity, at a low light intensity of 50 lux (Fig. 4), and also its optimum light condition for H_2 production is much lower than those of other phototrophic bacteria, shown in Table 1. In case of temperature condition, the bacterium could produce H_2 moderately at temperatures of 20 to 35°C (Fig. 6).

Table 1. H₂ production rates in some diazotrophic bacteria

Species	Maximum H ₂ Production Rate (Nitrogenase-Mediated)	Reference
Rhodopseudomonas capsulata	5.8*	Hillmer & Guest(1977) ⁶⁾
Rhodospirillum rubrum	6.6**	Kondrat'eva et al.(1979) ¹⁸⁾
Rhodopseudomonas palustris	1.7**	Gogotov et al.(1973)19)
Rhodopseudomonas sphaeroides	1.3**	Jones & Monty(1979) ²⁰⁾
Thiocapsa roseopersicina	7.6**	Kondrat'eva et al.(1979)18)
Chromatium sp. (Miami PBS-1071)	6.0**	Ohta & Mitsui(1981) ²¹⁾
Marine Blue-green Alga (Miami BG 7)	230***	Mitsui & Kumazawa(1977) ¹³⁾
Anabaena cylindrica	4.9*	Benemann & Weare(1974) ²²⁾
Klebsiella pneumoniae	12.7**	Andersen & Shanmugan(1977) ²³⁾
Azospirillum brasilense	3.3**	Lespinat & Berlier(1981) ²⁴⁾
Azotobacter chroococcum	0.3*	Smith et al.(1976) ²⁵⁾
Chromatium sp.	10.0****	This research

^{*:} μ mol/hr/ (mg dry cell weight), **: μ mol/hr/(mg protein) ***: μ mol/hr/(mg chlorophyll), ****: nmol/hr/(mg dry cell weight): The rate was found under the conditions of 1000 lux, 100 mg H₂S-S/l, and 30°C, as in Fig. 6.

 H_2 production by phototrophic bacteria in natural conditions would not be largely expected, since environmental conditions, e.g., light, organic or inorganic compounds, would become not easy to be optimum for the nitrogenase reaction, when compared to particular experimental conditions. Thus, in natural environment where N_2 -fixing conditions are formed, a bacterium of low environmental requirement for the growth would be a potent species of N_2 reduction or H_2 production. Though a relatively large quantity of H_2 was not produced by *Chromatium* sp. (Table 1), it is proposed that *Chromatium* sp. would be a species predominantly and readily producing H_2 in the lake.

In another aspect, biological H₂ production for development of an alternative fuel source may depend on a species capability of producing H₂. When an efficient biological H₂ production system is envisioned, the most important factors for the system would be a selection of a species which can produce high rate of H₂, and a finding of economic energy and electron source for the H₂ production.¹³⁾ In this respect, some species of blue-green algae were nicely met with the biological H₂ production system from the fact that the only major inputs into the system were solar energy and water (salt water).^{13,31)}

However, in respect of reusing and purifing a waste water containg H_2S , purple sulfur bacteria may become a candidate for the H_2 production system. In case of H_2 production by *Chromatium* sp. of Kaiike strain, only H_2S and CO_2 as an electron and carbon source for the growth are required, and the growth of other microbes as a contaminant source in the culture of *Chromatium* sp. of Kaiike strain are easily controlled because the bacterium could well produce H_2 without an addition of external organic compounds for the H_2 production. In addition, a light condition of 1000 to 2000 lux for the maximum H_2 production, and a temperature condition of 20 to 35°C for the moderate H_2 production may give an economic and pratical merits for the management of the

system.

Miami PBS 1071 was thought to be the best candidate for the H_2 production in relation to the fast growth and high H_2 production rate in tropical or subtropical regions.^{21,30)}

However, it is suggested that *Chromatium* sp. of Kaiike strain can become also a practical H₂ producer from the points of above mentioned merits for the H₂ production, in temperate region.

Acknowledgment

We are indebted to Prof. Matsuno T. and students, Nakaoka H. and Yanakio H., of laboratory of Oceanography, Nagasaki University, for his encouragement in the course of this work and for their assistance in carrying out the field observation, respectively. We wish to express our thanks to Mrs. Okyoung Lee-Stadelmann, a brain pool scientist of Applied Radio Isotope Research Institute, Cheju National University, for the improvement of the manuscript in English expression.

References

- Matsuyama, M. (1977) Limnological features of lake Kaiike, a small coastal lake on Kamikoshiki island, Kagoshima Prefecture, Japan. *Jpn. J. Limnol.*, 38, 9-18.
- 2. Matsuyama, M. (1978) Importance of photosynthetic sulfur bacteria, *Chromatium* sp. as an organic matter producer in Lake Kaiike. *Jpn. J. Limnol.*, **39**, 103-111.
- Matsuyama, M. (1981) Comparative aspects of a small coastal lake, Kaiike, on Kamikoshiki island, southern Kyushu, Japan. Verh. Internat. Verein. Limnol., 21, 979-986.
- Matsuyama, M. (1987) A large phototrophic bacterium densely populating the O₂-H₂S interface of Lake Kaiike on Kamikoshiki island, southwest Japan. *Acta Academiae Aboensis*, 47, 29-43.

- 5. Matsuyama, M. (1980) Some considerations on the dense population of a purple sulfur bacterium, Chromatium sp., at the mid-depth of lake Kaiike. *Jpn. J. Limnol.*, **41**, 84-94.
- Hillmer, P. and H. Guest (1977) H₂ metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H₂ production by growing cultures. *J. Bacteriol.*, 129, 724-731.
- Siefert, E. and N. Pfennig (1978) Hydrogen metabolism and nitrogen fixation in wild type and Nif mutants of Rhodopseudomonas acidophila. Biochimie, 60, 261-265.
- Matsuyama, M. (1987) H₂ production by a large phototrophic bacterium isolated from the bacterial plate of lake Kaiike. *Jpn. J. Limnol.*, 48, 133-136.
- Ormerod, J. G. and H. Gest (1962) Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. *Bact. Rev.*, 26, 51-66.
- Matsuyama, M. (1986) N₂ fixation of a large phototrophic bacterium isolated from the bacterial plate of lake Kaiike with some considerations on its in situ growth. *Jpn. J. Limnol.*, 47, 369-375.
- Moon, S.-W. and M. Matsuyama (1995) Effects of environmental factors upon nitrogen fixation of *Chromatium* sp. isolated from lake Kaiike. *Bull. Fac. Fish. Nagasaki Univ.*, 76, 1-6.
- 12. Yoch, D. C. (1978) In The Photosynthetic Bacteria. Clayton, R. K. and W. R. Sistrom (ed.), Chap. 34, pp. 657-676, Plenum Press, New York.
- Mitsui, A. and Kumazawa, S. (1977) In Biological Solar Energy Conversion Mitsui, A., S. Miyachi, A. San Pietro and S. Tamura (ed.), Section I, pp. 23-51, Academic Press, New York.
- 14. Pfennig, N. and H. G. Tr per (1974) In Bergey's Manual of Determinative Bacteriology, Buchanan, R. E. and N. E. Gibson (ed.), pp. 24-75, Wiliams & Wilkins, Baltimore.
- Pfennig, N. (1965) Anreicherungskulturen für rote und grüne Schwefelbakterien. Zbl. Bakt., I. Abt Orig. Suppl., 1, 179-189, 503-504.
- Wilson, J. C., Y. Jouanneau, A. Colbeau and P. M. Vignais (1983) H₂ metabolism in photosynthetic bacteria and relationship to N₂ fixation. *Ann. Microbiol.*, 134B, 115-135.
- 17. American Public Helth Association (1965) In Standard Method for the Examination of water and Wastewater 12th ed., p. 522, APHA, New York.
- Kondrat'eva, E. N., I. N. Gozotov and I. V. Gruzinskii (1979) Influence of nitogen-containing compounds on the photoliberation of hydrogen by purple bacteria and on nitrogen fixation. *Mikrobiologiya* (English translated), 48, 389-395.

- Gogotov, I. N., T. V. Mitkina and V. P. Glinskii (1973) Effect of ammonium on hydrogen liberation and nitrogen fixation by *Rhodopseudomonas palustris*. *Mikrobiologiya* (English translated), 43, 586-591.
- 20. Jones, B. L. and K. J. Monty (1979) Glutamine as a feed-back inhibitor of the *Rhodopseudomonas sphaeroides* nitrogenase system. *J. Bacteriol.*, **139**, 1007-1013.
- 21. Ohta, Y. and Mitsui A. (1981) In ^rAdvances in biotech-nology Moo young, M. and C. W. Robinson (ed.) Vol. 2, pp. 303-308, Pergamon Press.
- Benemann, J. R. and N.M. Weare (1974) Hydrogen evolution by nitrogen-fixing Anabaena cylindrica cultures. Science, 184, 174-175.
- Andersen, K. and K. T. Shanmugan (1977) Energetics of biological nitrogen fixation: Determination of the ratio of formation of H₂ to NH₄ catalysed by nitrogenase of Klebsiella pneumoniae in vivo. J. Gen. Microbiol., 103, 107-122.
- Lespinat, P. A. and Y. V. Berlier (1981) The dependence of hydrogen recycling upon nitrogenase activity in AZOSPIRILLUM BRASILENSE Sp. 7. FEMS Microbiol. Lett., 10, 127-132.
- Smith, L. A., S. Hill and M. G. Yates (1976) Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. *Nature*, 262, 209-210.
- 26. Sympson, F. B. and R. H. Burris (1984) A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. *Nature*, **224**, 1095-1097.
- Newton, J. W. and P. W. Wilson (1953) Nitrogen fixation and photoproduction of molecular hydrogen by THIORHODACEAE. Antony van Leeuwenhoek; Microbiol. Serol., 19, 71-77.
- 28. Gest, H. and M. D. Kamen (1949) Photoproduction of molecular hydrogen by *Rhodospirillum rubrum*. *Science*, **109**, 558-559.
- Stewart, W. D. P. (1969) Biological and ecological aspects of nitrogen fixation by free-living microorganisms. *Proc. Roy. Soc. B.*, 172, 367-388.
- 30. Ohta, Y., J. Frank and A. Mitsui (1981) Hydrogen production by marine photosynthetic bacteria: Effect of environmental factors and substrate specificity on the growth of a hydrogen-producing marine photosynthetic bacterium, *Chromatium* sp. Miami PBS 1071. *Int. J. Hydrogen Energy*, 6, pp. 451-460.
- Suda, S., Kumazawa, S. and Mitsui, A. (1992) Change in the H₂ photoproduction capability in a synchronously grown aerobic nitrogen-fixing cyanobacterium, Synechococcus sp. Miami BG 043511. Arch. Microbiol., 158, 1-4.

카이이케호에서 농밀하게 분포하는 Purple Sulfur Bacterium의 수소생산

문상욱*, 마쓰야마 미치로(나가사키대학 해양생산과학연구과, 일본)

초록: 카이이케호에서 농밀하게 분포하는 Chromatium sp.의 수소생산을 몇몇 환경조건하에서 측정하였다. 최대 수소생산 $(0.01 \, \mu \text{mol/hr}/(\text{mg dry cell weight}))$ 은 낮은 조도 $(1000 \, \text{lux})$, $20 \, \text{mg H}_s$ S-S/I의 황화수소 농도와 30° C 의 조건하에서 얻을 수 있었다. 수소생산은 질소가스 또는 암모늄에 의해 상당히 저해를 받았다. Chromatium sp.의 수소생산속도는 타 광합성세균에 비해 낮았다. 본 균은 광독립영양적으로 낮은 조도 또는 낮은 H_s S 농도하에서 도 쉽게 수소를 생산하는 점으로부터 카이이케호의 가장 유력한 수소생산자라고 고려되었다. 이러한 Chromatium sp.의 광독립영양적 수소생산특성으로부터, 본 광합성세균은 온대역에서의 생물적 수소생산시스템에 대한 경제적이고 실용적인 생물종이 될 수 있으리라 제안되었다.

^{*}연락저자