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1. Introduction

The sphere packing problem is to maximize the density and
kissing number of balls in R®, not overlapping.

If n < 3, the answer is known so far. But, for n > 4, the
problem is still open. To simplify this problem, we only consider
the lattice packings. The lattice packing is the sphere packing
centered at a lattice.

Now, an elliptic curve E is called supersingular if the endor-
morphism ring End(E) has rank 4.

If E,E’ are elliptic curves, L = Hom(E’, E) is an algebraic
lattice (Lemma 4.1.)

In this paper, we prove the following.

If K = C and jg = 0, then End(E) & A,, and if K = F; and
je =0, then End(F) = D4 (Theorem 10.1.).

If J is an abelian variety of dlmensmn g, then Hom(J, E) has
rank < 4g (Theorem 10.2.).

If E is supersingular over F,, with ¢ = pf, p > 0, the rank of
Hom(J, F) is < 4g (Theorem 10.4.).

2. Hom(F, E) and dual isogeny
Let F, E be elliptic curves over a field K. Then,
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Hom(F, E) = {¢ € Morg (F, E) : ¢(Or) = Og}
= Morg (F, E)/{ translations}
& Morg (F, E)/{constant maps}

is an abelian group.

Let F be defined by g(u,v) = 0 and E be defined by f(z,y) = 0.

Any isogeny ¢ : F — E is given by é(u,v) = (z,y), where
z = R(u,v) and y = S(u, v) are rational functions with f(R, S) =
0.

Therefore, Mor(F, E) — E(K(F)) and this isomorphism gives

{ constant maps } — F(K).

Hence, Hom(F, E) = E(K(F))/E(K).

Now, let ¢ : F — E be an isogeny of degree m. Then there
exists an isogeny (/) E — F of degree m such that (,b P =m
and ¢ o ¢ = m.

We call it the dual isogeny of ¢. Then, it has the following
properties.

ProroOSITION 2.1.

(1) ($o)=4voé_
(2) (p+Y)=0d+9
(3) A=m
4) ¢=¢

3. Elliptic curves over C
We counsider the case that K = C.

THEOREM 3.1. Hom(F, E) is a free abelian group of rank < 2.

Proof. Let E : y? = 4z — gox — g3, where A # 0.

. . . . dx .
Then, the invariant differential w = — is regular. And we
y

have E(C) = C/L, via,
P”“)fo (mod L ), where L = {[ w: v € Hi(E;Z)}.
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Similarly, F(C) = C/M.
Let ¢ : F — E be an isogeny.
We have the following commutative diagram

Jox
C —— C

! |

oM -2 /L

The correspondence a +— ¢, = ¢ gives one-to-one correspon-
dence.

Therefore, Hom(F,E) = {a € C: aM C L}.

Here, deg ¢o = fiker ¢ = (o *L/M) = §(L/aM).

Hence, F = F' if and only if 3¢ : F — E of degree 1

if and only if Ja # 0 such that aM = L.

Put M =Zz + Zz; and L = Zw; + Zw,. Any ¢ € Hom(F, E)
is determined by « such that

azy = awp + bwy, aze = cwy +dwy, a,b,c,d€Z

But, a is completely determined by az; = aw; + bws, a,b€ Z.
Therefore, there is a map Hom(F, E) — Z2 given by ¢, —
(a,b).
This map is injective, since wy,ws are linearly independent.
Therefore, Hom(F, E) — Z2. This proves the theorem.

Let R = End(E) = Hom(E,E) = {a € C: oL & L}.
Then R contains Z.

If rank(R) = 1, then R = Z.

Next we consider the case that rank(K) = 2.

DEFINITION. Let K be a finitely generated Q-algebra. Then
an order R of K is a subring of K such that

(1) R is a finitely generated Z-module, and
(2) K=R®Q.
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EXAMPLE. Let K = Q(v/D) be an imaginary quadratic field
where D < 0, Ok the ring of integers in K, and f # 0 an integer.
Then R =Z + fOgk is an order of K.

THEOREM 3.2. If rank(R) = 2, R is an order of an imaginary
quadratic field.

Proof. Since L = Zw, + Zwy = wy(Z + Z7) with 7 = gg, we
may assume L = Z + Zr. '

Then, « = m+nr (n # 0) and ar = m’ + n'r for some
m,m',n,n € Z.

Therefore at? + b1 + ¢ = 0.

Let D = b?> — 4ac. Then D < 0, since 7 € C — R is a root of
ar’ +br+c=0.

Hence, a = m + nr € Q(v'D).

Actually, R = Z + zﬂ*iz-‘@-‘

THEOREM 3.3. The set {F/C: End(F) = Rp}/ = is finite,
of order h(Rp) = §Pic(Rp).

REMARK. h(Rp) =~ |D|?

Proof.

End(F) = R if and only if lattice M(C K) has endomorphisms exactly by R
if and only if M is a proper R-submodule of K of rank 2
if and only if M ia a projective R-module of rank 1.

Therefore,

F 2> E if and only if M = aL for some a € K*

if and only if the projective R-modules M, L are isomorphic

Hence, there exists a map {F : End(F) = R} < Pic(R), via,
F +— the class of the lattice M of F.

For M € Pic(R), if we put F = C/M, F > the class of the
lattice M of F. Hence, this map is also surjective.
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4. General Case

LEMMA 4.1. Hom(F, E) is torsion-free.

Proof. Let ¢ #0. If m¢ = 0, deg m deg ¢ =0
Since ¢ # 0, deg ¢ # 0.
Hence, deg m = 0. Therefore, m = 0.

LEMMA 4.2. End(E) is an integral domain.

Proof. Let ¢ ot = 0. Then, deg ¢ deg % =0
Therefore, deg ¢ = 0 or deg ¥ = 0, hence, ¢ =0 or ¢ = 0.

THEOREM 4.1. If | is prime to char(K), then E; = {P €
E(K):IP =0} = (Z/1)%

Proof. Let K = C. Then, F(C) = C/L, and
B = %L/L ~ L/IL = (Z/1)2.

5. Tate Module

Let K be an arbitrary field and | € Z be a prime with [ #
char(K). Then, we get an inverse limit system

l 1 1
coo— Eis — Ep — Ep — 0.

The (l-adic) Tate module of E is the group
Tl(E) =lmE»: 2Z;Q Z,.
(._.__

n

Let ¢ : F — FE be an isogeny. Then ¢ omp = mg o ¢.
Take m = [", then we get the following commutative diagram

¢
P}n-&l ey E[n+l

! !

¢
.F'ln D e Etn

This induces the map ¢; : T} F — T} E which is Z;-linear.
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THEOREM(WEIL). The natural map
Homg (F, E) ®z Z; — Homg, (T\(F), T:(E))

given by ¢ — ¢y is injective.
This is also surjective if

(1) ([9]) K is a finite field;
(2) ([3]) K is a number field.

COROLLARY. Let E be an elliptic curve. Then End(E) is a
free Z-module of rank 1,2, 4 over Z.

Proof. End(F) ® Z; — Endyz,(Ti(F)) = Endz,(Z; & Z;)
Since any submodule of Endgz,(Z; @ Z;) has rank 1,2 or 4, the
corollary holds.

6. Quaternion algebra

DEFINITION. A guaternion algebra is an algebra of the form

A=Q+Qa+QB+Qap
with the multiplication rules

a?,82e€Q a’<0, B%2<o, af = —fPa.

The endomorphism ring of an elliptic curve is either Z, an order
in a quadratic imaginary field or an order in a quaternion algebra.
The last case occurs only when p > 0.

EXAMPLE. Let p = 2,F : y> + y = z%. Then, End(E) =
it ik
Zi+Zj+Zk+z 2T Y
which is the Hamiltonian quaternion.

In this case, End(FE) is called the Hurwitz order.

where 12 = j2 = —1,k = ij = —ji,

ExXAMPLE. When p = 3, and E : y? = 23 — z or when and
p=>5and E:y? = 2% — 1 End(FE) rank 4.
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7. Supersingular curves

DEFINITION. An elliptic curve E over K is supersingular if
End(F) has rank 4.

THEOREM 7.1. We have the following.

(1) The map p : E — E is purely inseperable, and j(E) €
F,:.

(2) E is a supersingular curve if and only if E(K), = 0.

(3) E is a supersingular curve if and only if the invariant dif-

ferential w is exact, i.e., w = dg for some rational function

qg.
DEFINITION. Let f(z,y) = y*+a1zy+aszy—z2—axx?—a4x—ae
d d
Then the invariant differential w is defined as w = }{ = - 71[
Yy xr
2 3 dz
ExAMPLE. Whenp=2and F:y*+y=2’,w= 5+ 1 =dzr
is exact. d
Whenp=3and E:y’ =23 -z, w= szy T = —dy is exact.

de dy  dy

— 2 — 23 _
When p=5and F:y“ =1z »l,ww%——gz—c—i—wzxz.

Therefore dz = 2yw and dy = —2zr%w.
Hence, d(zy) = ydz + zdy = 2(y* — z3)w = 2(-1)w = 3w.
Hence, w = d (%y—), which is exact.

If p = 2, there exists a unique supersingular curve y% +y = z3.

THEOREM 7.2. Let K be a finite field of characteristic p > 2.
(1) Let E/K be an elliptic curve with Weierstrass equation

E:y*= f(2),

where f(z) € K|[z] is a cubic polynomial with distict roots
(in K). Then F is supersingular if and only if the coeffi-
cient of zP~1 in f(z)P~ /2 s zero.
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(2) Let m = P ; ! and define a polynomial

Hy(t) = Em: (’f)zt*.

i=0
Let A € K,\ # 0,1. Then the elliptic curve
E:y’=z(z~1)(z -\

is supersingular if and only if Hy()) = 0.
(3) The polynomial Hy,(t) has distinct roots in K. Up to
isomorphism, there are exactly

p/12] + ¢,

supersingular elliptic curves in characteristic p, where €3 =
1, and forp > 5

e =0,1,1,2 if p=15,,7,11( mod 12).

THEOREM 7.3. Ifp=11, E :y?=z(x - 1)(z — ) is super-
singular if and only if j = 0 or 1.

Proof Hp(t) =3 +3t* + 3 +t2+3t+1= (2 -t+ 1D+
1)(t — 2)(t+ 5) ( mod11).

Therefore, E is supersingular if and only if A = 1,2, -5 or

A2—X+1=0ifand only if j = ZSW =0 or 1(= 1728)

AZ(A—1)2 )

THEOREM 7.4. Let p > 5,FE : y? = 2 + 1. Then, E is super-

singular if and only if p = 2 (mod 3). E is non-supersingular if
and only if p=1 (mod 3).

Proof. We must compute the coefficient of zP~! in (23 + 1)™
p—1
where m = 5
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me
(B +1)™ = Z (r’r:) o3k,
k=0
If p = 2 (mod 3), then there exists no such k.
Hence, (z2 + 1)™ has no term of zP~1.
Therefore, E is supersingular.
If p=1 (mod 3), then the coefficient of zP~! is (7'} = m(m —
| : _ -1
1)---(m—k+1)#0in Fp. Here, k = P———?;w
Therefore, E is non-supersingular.
THEOREM 7.5. Let p > 3, E : y? = z® +z, j = 1728.
Then E is supersingular if and only if p = 3( mod 4), E is non-
supersingular if and only if p = 1( mod4).

THEOREM (DEURING). Let char(K) = p. Then

1 _p—1
Z fAut(E) = 24

E:supersingular

Proof. Let p = 2, then there exists unique supersingular curve
y? + y = z3. Also, there exists 24 automorphisms on E if j = 0.

Let p # 2 and let E;y? = z(x — 1)(z — ). Now, the Deuring
polynomial Hy(t) has distinct m roots. Also, j is a supersingular
j-invariant if and only if Hp(X) = 0.

Hence, there exists P supersingular over K.
(A2-x+1)°
AZ(A - 1)2

This map has degree 6 with ramification at oo, 0,123,

The reason is following;

If A # oo, then j = oo, and

7'(X) = 0 if and only if A is ramification, and hence

3AZ-A+1)22A-DAZ(A-1)2 = (A2 = A+1)320(A—-1)(22 - 1),
1e.,

A=0A-1=0A= }2—,)\2-—/\4-1 =0or 3AA-1) =

2(A2 - A+ 1), ie.,

Now, j(A) = 28
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A=0,i1,2,%or M -A4+1=0.

IfA2—A+1=0, then j = 0.

If A=0,1, then j = oo.

IfA=-1,2, % then j = 1728.

If j(A) = j is supersingular with j # o00,0,1728, then there
exists 6 A's with j(A) = j.

If =0, then 2 X's and if j = oo or 1728 then 3 A’s (j # oo,
since A # 0,1,00 ).

Now,
p—1 _
= Z 1=6 Z 1+ 30+ 28.
A:supersingular E ) :supersingular
j#0,1728
Here,
_ { 0 ifj=1728 (ordinary),
“ 11 ifj=1728 (supersingular).
5= { 0 ifj=0 (ordinary),
" l1 ifj=0 [(supersingular).
Therefore,
p—-1 1 a pB
24 Z 2 1'%

E) :supersingular
3#0,1728

If 7 #0,1728, Aut(E) = {£1}. Therefore, | Aut(E) |=2.
If =0,]| Aut(E)| = 6.
If j = 1728, | Aut(F)| = 4.

p—1 1
Here, —71—= > [Aut(E)|

E:supersingular
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REMARKS.

(1) Let E/Q. Then there exist infinitely many prime p such
that E/F, is ordinary.

(2) Let E/Q. Then there exists infinitly many prime p such
that E/F, is supersingular.([2])

(3) Let E be CM. Then, the density of supersingular primes
is 0, ie.,

li_rﬁ) fi{p < z : supersingular prime }/§{p <z :p: is prime } = 0.
T
(4) Conjecture (Lang-Trotter[8])

#{p < z : p is a supersingular prime } ~ ¢/z/logr as z — oc.

8. Sphere packings and kissing numbers

Pack R" with balls of equal radius » > 0, not overlapping.
Then, we define the density

. vol(P N D)
- oy«
P= i op) b
vol(D)—c0

and define the kissing number

7= the number of balls touching a fixed ball.
PROBLEM. Maximize p and 7 for a given n.
The best packing is the packing that p is the maximum.
EXAMPLE. If n=1,thenp=1, v = 2.
EXAMPLE. If n = 2,
(1) square lattice packing(Z,-lattice packing) : p = Z—, T=4

(not best).
(2) hexagonal lattice packing(A,-lattice packing ) : p =

— 7 = 6 (best packin
Wi (best packing)
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ExaMPLE. Ifn = 3, the face centered cubic lattice packing(As-
packing) has p = 7721-5, 7 = 12. This is the best packing proved

by Hsiang(1990).

When n = 3, in 1694, I. Newton believed T = 12.
In 1694, D. Gregory beleived 7 = 13.
In 1874, Bender, Hoppe and in 1875, Giinther proved 7 = 12.

9. Lattice packings

Let vy, vg, - - - , v be linearly independent vectors in RV. (Here,
we assume N > n, and usually N = n). Let L = Zvy +--- + Zv,
be a lattice.

The lattice packing is the sphere packing centered at L.

ExXAMPLE. Let Z,, = Z" be the n-dimensional cubic (or inte-
ger) lattice. Then 7 = 2n.

1
Take r = 5 then

Un
o’

1 1
Pn = vol Bn(E) = ’Un(’2') ==

where B,(r) = {z € R*| ||z|| < r},va(r) = vol By(r) and v, =
va(1) .
3
LEMMA. v, = ———
F(—i +1)

Proof. For any n,r,v,(r) = 7"vu,.
Consider the unit n-ball

S S Y

If r = /1 —z2, then
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1
Uy = / Vn-1(r)dz,
-1
1
= 2/ T"“lvn_l(r)d:rn
0
1
::2vn_1l/~(\/1~—zﬁ)"“1dmn
0
! dt .
= 2Up1 (\/1 —t) T ( where t = z7)

2\/5
==vn_1ﬂ< n+1 1)

Now, v; = 2, hence,

PG TNG)  TEING)
=T T2 ntl T 5
r®% o2 g
1 3
riy-ir)
=__~Z_ﬁ_;__1__2__.2
r®i)

1, 1.1
I'(3) ;211‘(5)

n

3
_ (l)" e
*I(-2-+1)”P(-;f+1)

This proves the theorem.

41
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Let L = Zv, + - - - + Zv,, be a lattice in R® and let

1 1
T o= ’2"|Il“mm = '2-\/ < l,l >min'

Then,
. vn (T)§(L N D)
= 1
p vol(ll)r)n—-roo VO](D)

The volume of fundamental domain = vol(R" /L)

__ vol(D)
T #HLND)
= |det(v1,va, -, Un)|
Therefore,
= lim r"v 1
B vol(D)—o0 " ldet(vl,vg, o ,’Un)'
= Un, 7 n 1
= Vb ) G o o)
::PnN(L)n/Z’
< 1,1 >min
where p(L) = ——=——— and det(L) = det(< v;,v; >) =
uo) = S (L) = det(< vv; >)
det(vy, - ,vn)%

PROBLEM. Maximize p(L) over all lattice in R®. This is the
best lattice packing .

EXAMPLE (A2-LATTICE).

1 2 1 0}

L)= — = —, where L = .
W=7 2{% %
iy

Hence, p = =12 .
p= pap(L) LN
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EXAMPLE (A3-LATTICE).

u(L) = |L|~%/3 = (v/2)?/3, where L =

olvfe

gc«o
WL

DOt DOt e

— L 3/2 _ 3 -
p = pap(L) V2= \/—8
Now, R*O,(R) \ GL,(R)/GL, (Z) % R is the space of all

lattices in R™ up to orthogonal (conformal) equivalence, where
p(aL) = p(L) for all @ € R*.

ExAMPLE. If n = 2, then
R*SO; = C* \ GL3(R)/G L, (Z) and p = 12}11?'
Hence, pmax = “g" and p = pZI“(L)Z/z = N

V3 V12

Best lattice packings for n < 8.

n= 1 2 3 4 5 6 7 8
Lattice= Z As As Dy Ds FE¢ E; Ej R
detL = 2 3 4 4 4 3 2 1

when n = 1,2, 3, they are the best sphere packmg

Here, A, = {(z0, 71, "+ ,2,) € Z™*! I To+ -+ 1z, =0}

D, = {(z1, - ,zp) € Z" | 27+ - -+ zpiseven}. If n =
3, A3 ~ D3.

For n = 0(mod 8),

n = 11
En={(xy, - ,1,) €Z |Zx,__0 (mod?)}+Z(2, ,2)

. 1 1. ;
= {{z1+ = ',az,,+-2-) | z; € Z,Zw,: =0 ( mod 2).}

i
E7:{IL'€E82.’B7:~"$3}
E6:{$€E3:$6:$7=$3}
For 8 < n < 24, the Leech lattice As4 and its slices are conjec-
tured "best”.
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10. Algebraic lattices

An algebraic lattice is a free Z-module L of rank n with Q :
L — Z positive-definite quadratic form @ : L — Z.

THEOREM 10.1. Let E, E’ be elliptic curves over K and
L =Hom(F', E).

If K =C, E'=F with jg = 0, then, L = A,-lattice.

If K =F4, E' = FE with jg = 0, then, L & D,-lattice.

Proof. If we let Q(¢) = deg ¢, then Q is a positive-definite
quadratic form. Hence we clearly get the result.

For example, if

(4a)®

E:y = 1,7=-1
v=23+1,j 728A

=0,

then End(F) = A,.
And, if E : y? = 2% + z, then End(E) & D,.
Now,
L = Hom(E", E)

={¢:E' — E | ¢(0') =0}
= Morx(E’, E)/{translations}.

Let E’ be given by g(u,v) = 0, and let ¢(u,v) = (z,y) with
z = R(u,v), y = S(u,v) where R, S are rational functions in u, v
such that f(R,S) = 0.

Hence, Mor(E',E) = E(K(E')) and { constant maps } =
E(K).

Therefore, L = E(K(E'))/E(K) = Mork(FE', E)/{constants}.

Replace E’ by a curve X of any genus g. Then, L is a free
abelian group of rank < 4g with Q(¢) = deg¢.

Let J be an abelian variety of dim g (or, J = Jacobxan of F).
Then, L =Hom(J, E) has rank L= (§ of occurences of F in J)
rank(End(FE)) < 4g.

For example, take J = E9.

Consequently, we have the following theorem.
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THEOREM 10.2. Let J be an abelian variety of dimension g.
Then L = Hom(J, E) has rank < 4g.

THEOREM 10.3. Let 3y + y3z + 23z = 0 be Klein quartic. If
K =C, L has rank 6.

Then J = E3 and j = —3% - 53.

This is a curve with complex multiplication by D = 7.

If K = C then L has rank = 6, detL = 73 and < 1,1l >pin= 4.

THEOREM 10.4. In characteristic p > 0,J = E9, F is super-
singular over F, with q = p/. Then, rank of Hom(J, E) is 4g.

Proof. X : z9%! 4 y9%1 4 29%1 = ( has a non-trivial automor-
phism, via a +— o? = @.
-1
Take g = q~(~q-—l

Then, N(X/F,2) = ¢* + 1, and G = PUs(q) acts on X.
If ¢ = 2( mod 3),

E :u® +v3 + w® = 0 is supersingular in char p.

There exists a map
g 4y 4 2 =0 — WP+ =0

where u = :cg%l,v = y%‘l,w = 2%,
Therfore, Hom(J, E) # 0 and rank is 2¢(g — 1) = 4g.

COROLLARY. Let p =2 and q = 2% = 4.
X:2%+4y°+ 25 E:y? =234z Then, g =6,
L = Hom(X, E) has rank 24.

TheH, L= A24.
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