SUPERSINGULAR CURVES AND SPHERE PACKINGS

HWASIN PARK AND DAEYEOUL KIM

Dept. of Mathematics, Chonbuk National University, Chonju 561-756, Korea.

1. Introduction

The sphere packing problem is to maximize the density and kissing number of balls in \mathbb{R}^n , not overlapping.

If $n \leq 3$, the answer is known so far. But, for $n \geq 4$, the problem is still open. To simplify this problem, we only consider the lattice packings. The lattice packing is the sphere packing centered at a lattice.

Now, an elliptic curve E is called *supersingular* if the endormorphism ring End(E) has rank 4.

If E, E' are elliptic curves, L = Hom(E', E) is an algebraic lattice (Lemma 4.1.)

In this paper, we prove the following.

If $K = \mathbb{C}$ and $j_E = 0$, then $\operatorname{End}(E) \cong A_2$, and if $K = \mathbb{F}_4$ and $j_E = 0$, then $\operatorname{End}(E) \cong D_4$ (Theorem 10.1.).

If J is an abelian variety of dimension g, then Hom(J, E) has rank $\leq 4g$ (Theorem 10.2.).

If E is supersingular over \mathbb{F}_q , with $q = p^f$, p > 0, the rank of Hom(J, E) is $\leq 4g$ (Theorem 10.4.).

2. Hom(F, E) and dual isogeny

Let F, E be elliptic curves over a field K. Then,

Received March 31, 1997.

This was partially supported by KOSEF, 1994, Grant No. 941-0100-014-2.

$$\operatorname{Hom}(F, E) = \{ \phi \in \operatorname{Mor}_K(F, E) : \phi(O_F) = O_E \}$$

 $\cong \operatorname{Mor}_K(F, E) / \{ \text{ translations} \}$
 $\cong \operatorname{Mor}_K(F, E) / \{ \text{constant maps} \}$

is an abelian group.

Let F be defined by g(u, v) = 0 and E be defined by f(x, y) = 0. Any isogeny $\phi: F \longrightarrow E$ is given by $\phi(u, v) = (x, y)$, where x = R(u, v) and y = S(u, v) are rational functions with f(R, S) =0.

Therefore, $\operatorname{Mor}(F, E) \xrightarrow{\cong} E(K(F))$ and this isomorphism gives $\{ \text{ constant maps } \} \xrightarrow{\cong} E(K).$

Hence, $\operatorname{Hom}(F, E) \cong E(K(F))/E(K)$.

Now, let $\phi: F \longrightarrow E$ be an isogeny of degree m. Then there exists an isogeny $\widehat{\phi}: E \longrightarrow F$ of degree m such that $\widehat{\phi} \circ \phi = m$ and $\phi \circ \widehat{\phi} = m$.

We call it the dual isogeny of ϕ . Then, it has the following properties.

Proposition 2.1.

$$(1) \ \widehat{(\phi \circ \psi)} = \widehat{\psi} \circ \widehat{\phi}$$

(2)
$$(\widehat{\phi + \psi}) = \widehat{\phi} + \widehat{\psi}$$

(3)
$$\widehat{m} = m$$

$$(4) \ \hat{\phi} = \phi$$

3. Elliptic curves over C

We consider the case that $K = \mathbb{C}$.

THEOREM 3.1. Hom(F, E) is a free abelian group of rank ≤ 2 .

Proof. Let
$$E: y^2 = 4x^3 - g_2x - g_3$$
, where $\Delta \neq 0$.

Then, the invariant differential $w = \frac{dx}{u}$ is regular. And we

have
$$E(\mathbb{C}) \xrightarrow{\cong} \mathbb{C}/L$$
, via,

have
$$E(\mathbb{C}) \xrightarrow{\cong} \mathbb{C}/L$$
, via,
 $P \mapsto \int_0^P \omega \pmod{L}$, where $L = \{ \int_{\gamma} \omega : \gamma \in H_1(E; \mathbb{Z}) \}$.

Similarly, $F(\mathbb{C}) \cong \mathbb{C}/M$.

Let $\phi: F \longrightarrow E$ be an isogeny.

We have the following commutative diagram

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\exists \alpha} & \mathbb{C} \\
\downarrow & & \downarrow \\
\mathbb{C}/M & \xrightarrow{\phi_{\alpha}} & \mathbb{C}/L
\end{array}$$

The correspondence $\alpha \longleftrightarrow \phi_{\alpha} = \phi$ gives one-to-one correspondence.

Therefore, $\operatorname{Hom}(F, E) = \{ \alpha \in \mathbb{C} : \alpha M \subset L \}.$

Here, $\deg \phi_{\alpha} = \sharp \ker \phi_{\alpha} = \sharp (\alpha^{-1}L/M) = \sharp (L/\alpha M)$.

Hence, $E \cong F$ if and only if $\exists \phi : F \longrightarrow E$ of degree 1

if and only if $\exists \alpha \neq 0$ such that $\alpha M = L$.

Put $M = \mathbb{Z}z_1 + \mathbb{Z}z_2$ and $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. Any $\phi \in \text{Hom}(F, E)$ is determined by α such that

$$\alpha z_1 = a\omega_1 + b\omega_2, \ \alpha z_2 = c\omega_1 + d\omega_2, \ a, b, c, d \in \mathbb{Z}$$

But, α is completely determined by $\alpha z_1 = a\omega_1 + b\omega_2$, $a, b \in \mathbb{Z}$.

Therefore, there is a map $\operatorname{Hom}(F,E) \longrightarrow \mathbb{Z}^2$ given by $\phi_{\alpha} \mapsto (a,b)$.

This map is injective, since ω_1, ω_2 are linearly independent.

Therefore, $\operatorname{Hom}(F, E) \hookrightarrow \mathbb{Z}^2$. This proves the theorem.

Let $R = \operatorname{End}(E) = \operatorname{Hom}(E, E) = \{ \alpha \in \mathbb{C} : \alpha L \subset L \}.$

Then R contains \mathbb{Z} .

If rank(R) = 1, then $R = \mathbb{Z}$.

Next we consider the case that rank(K) = 2.

DEFINITION. Let K be a finitely generated \mathbb{Q} -algebra. Then an order R of K is a subring of K such that

- (1) R is a finitely generated \mathbb{Z} -module, and
- $(2) \quad K = R \otimes \mathbb{Q}.$

EXAMPLE. Let $K = \mathbb{Q}(\sqrt{D})$ be an imaginary quadratic field where D < 0, O_K the ring of integers in K, and $f \neq 0$ an integer. Then $R = \mathbb{Z} + fO_K$ is an order of K.

THEOREM 3.2. If rank(R) = 2, R is an order of an imaginary quadratic field.

Proof. Since $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 = \omega_1(\mathbb{Z} + \mathbb{Z}\tau)$ with $\tau = \frac{\omega_2}{\omega_1}$, we may assume $L = \mathbb{Z} + \mathbb{Z}\tau$.

Then, $\alpha = m + n\tau$ $(n \neq 0)$ and $\alpha\tau = m' + n'\tau$ for some $m, m', n, n' \in \mathbb{Z}$.

Therefore $a\tau^2 + b\tau + c = 0$.

Let $D = b^2 - 4ac$. Then D < 0, since $\tau \in \mathbb{C} - \mathbb{R}$ is a root of $a\tau^2 + b\tau + c = 0$.

Hence, $\alpha = m + n\tau \in \mathbb{Q}(\sqrt{D})$.

Actually,
$$R = \mathbb{Z} + \mathbb{Z} \frac{D + \sqrt{D}}{2}$$
.

THEOREM 3.3. The set $\{F/\mathbb{C}: End(F) = R_D\}/\cong$ is finite, of order $\mathfrak{h}(R_D) = \sharp Pic(R_D)$.

REMARK. $\mathfrak{h}(R_D) \approx |D|^{\frac{1}{2}}$ Proof.

End(F) $\cong R$ if and only if lattice $M \subseteq K$ has endomorphisms exactly by R if and only if M is a proper R-submodule of K of rank 2 if and only if M is a projective R-module of rank 1.

Therefore,

 $F \cong E$ if and only if $M = \alpha L$ for some $\alpha \in K^*$ if and only if the projective R-modules M, L are isomorphic

Hence, there exists a map $\{F : \operatorname{End}(F) = R\} \hookrightarrow \operatorname{Pic}(R)$, via, $F \mapsto \operatorname{the class}$ of the lattice M of F.

For $M \in \text{Pic}(R)$, if we put $F = \mathbb{C}/M$, $F \mapsto$ the class of the lattice M of F. Hence, this map is also surjective.

4. General Case

LEMMA 4.1. Hom(F, E) is torsion-free.

Proof. Let $\phi \neq 0$. If $m\phi = 0$, deg $m \deg \phi = 0$ Since $\phi \neq 0$, deg $\phi \neq 0$.

Hence, deg m = 0. Therefore, m = 0.

LEMMA 4.2. End(E) is an integral domain.

Proof. Let $\phi \circ \psi = 0$. Then, deg ϕ deg $\psi = 0$ Therefore, deg $\phi = 0$ or deg $\psi = 0$, hence, $\phi = 0$ or $\psi = 0$.

THEOREM 4.1. If l is prime to char(K), then $E_l = \{P \in E(\overline{K}) : lP = 0\} \cong (\mathbb{Z}/l)^2$.

Proof. Let
$$K = \mathbb{C}$$
. Then, $E(\mathbb{C}) \cong \mathbb{C}/L$, and $E_l \cong \frac{1}{l}L/L \cong L/lL \cong (\mathbb{Z}/l)^2$.

5. Tate Module

Let K be an arbitrary field and $l \in \mathbb{Z}$ be a prime with $l \neq \text{char}(K)$. Then, we get an inverse limit system

$$\cdots \to E_{l^3} \xrightarrow{l} E_{l^2} \xrightarrow{l} E_l \xrightarrow{l} 0.$$

The (l-adic) Tate module of E is the group

$$T_l(E) = \lim_{\substack{\longleftarrow \\ n}} E_{l^n} \cong \mathbb{Z}_l \otimes \mathbb{Z}_l.$$

Let $\phi: F \longrightarrow E$ be an isogeny. Then $\phi \circ m_F = m_E \circ \phi$. Take $m = l^n$, then we get the following commutative diagram

$$F_{l^{n+1}} \xrightarrow{\phi} E_{l^{n+1}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{l^{n}} \xleftarrow{\phi} E_{l^{n}}$$

This induces the map $\phi_l: T_lF \longrightarrow T_lE$ which is \mathbb{Z}_l -linear.

THEOREM(WEIL). The natural map

$$Hom_K(F, E) \otimes_{\mathbb{Z}} \mathbb{Z}_l \longrightarrow Hom_{\mathbb{Z}_l}(T_l(F), T_l(E))$$

given by $\phi \mapsto \phi_l$ is injective.

This is also surjective if

- (1) (9) K is a finite field;
- (2) ([3]) K is a number field.

COROLLARY. Let E be an elliptic curve. Then End(E) is a free \mathbb{Z} -module of rank 1, 2, 4 over \mathbb{Z} .

Proof. $\operatorname{End}(E) \otimes \mathbb{Z}_l \hookrightarrow \operatorname{End}_{\mathbb{Z}_l}(T_l(F)) \cong \operatorname{End}_{\mathbb{Z}_l}(\mathbb{Z}_l \oplus \mathbb{Z}_l)$ Since any submodule of $\operatorname{End}_{\mathbb{Z}_l}(\mathbb{Z}_l \oplus \mathbb{Z}_l)$ has rank 1, 2 or 4, the corollary holds.

6. Quaternion algebra

DEFINITION. A quaternion algebra is an algebra of the form

$$A = \mathbb{Q} + \mathbb{Q}\alpha + \mathbb{Q}\beta + \mathbb{Q}\alpha\beta$$

with the multiplication rules

$$\alpha^2, \beta^2 \in \mathbb{Q}, \quad \alpha^2 < 0, \quad \beta^2 < 0, \quad \alpha\beta = -\beta\alpha.$$

The endomorphism ring of an elliptic curve is either \mathbb{Z} , an order in a quadratic imaginary field or an order in a quaternion algebra. The last case occurs only when p > 0.

EXAMPLE. Let $p = 2, E : y^2 + y = x^3$. Then, End(E) $\cong \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k + \mathbb{Z}\frac{-1+i+j+k}{2}$ where $i^2 = j^2 = -1, k = ij = -ji$, which is the Hamiltonian quaternion.

In this case, End(E) is called the Hurwitz order.

EXAMPLE. When p = 3, and $E : y^2 = x^3 - x$ or when and p = 5 and $E : y^2 = x^3 - 1$ End(E) rank 4.

7. Supersingular curves

DEFINITION. An elliptic curve E over K is supersingular if $\operatorname{End}(E)$ has rank 4.

THEOREM 7.1. We have the following.

- (1) The map $p: E \longrightarrow E$ is purely inseperable, and $j(E) \in \mathbb{F}_{p^2}$.
- (2) E is a supersingular curve if and only if $E(\overline{K})_p = 0$.
- (3) E is a supersingular curve if and only if the invariant differential ω is exact, i.e., $\omega = dg$ for some rational function g.

DEFINITION. Let $f(x,y)=y^2+a_1xy+a_3y-x^3-a_2x^2-a_4x-a_6$ Then the invariant differential ω is defined as $\omega=\frac{dx}{f_y}=-\frac{dy}{f_x}$.

EXAMPLE. When p=2 and $E: y^2+y=x^3, \ \omega=\frac{dx}{2y+1}=dx$ is exact.

When p=3 and $E: y^2=x^3-x$, $\omega=\frac{dy}{3x^2-1}=-dy$ is exact.

When p = 5 and $E: y^2 = x^3 - 1$, $\omega = \frac{dx}{2y} = \frac{dy}{3x^2} = \frac{dy}{-2x^2}$.

Therefore $dx = 2y\omega$ and $dy = -2x^2\omega$.

Hence, $d(xy) = ydx + xdy = 2(y^2 - x^3)\omega = 2(-1)\omega = 3\omega$.

Hence, $\omega = d\left(\frac{xy}{3}\right)$, which is exact.

If p=2, there exists a unique supersingular curve $y^2+y=x^3$.

THEOREM 7.2. Let K be a finite field of characteristic p > 2.

(1) Let E/K be an elliptic curve with Weierstrass equation

$$E: y^2 = f(x),$$

where $f(x) \in K[x]$ is a cubic polynomial with distict roots (in \overline{K}). Then E is supersingular if and only if the coefficient of x^{p-1} in $f(x)^{(p-1)/2}$ is zero.

(2) Let $m = \frac{p-1}{2}$ and define a polynomial

$$H_p(t) = \sum_{i=0}^m \binom{m}{i}^2 t^i.$$

Let $\lambda \in \overline{K}$, $\lambda \neq 0, 1$. Then the elliptic curve

$$E: y^2 = x(x-1)(x-\lambda)$$

is supersingular if and only if $H_p(\lambda) = 0$.

(3) The polynomial $H_p(t)$ has distinct roots in \overline{K} . Up to isomorphism, there are exactly

$$[p/12] + \epsilon_p$$

supersingular elliptic curves in characteristic p, where $\epsilon_3 = 1$, and for $p \ge 5$

$$\epsilon_p = 0, 1, 1, 2$$
 if $p \equiv 1, 5, 7, 11 \pmod{12}$.

THEOREM 7.3. If p = 11, $E: y^2 = x(x-1)(x-\lambda)$ is supersingular if and only if j = 0 or 1.

Proof. $H_p(t) = t^5 + 3t^4 + t^3 + t^2 + 3t + 1 = (t^2 - t + 1)(t + 1)(t - 2)(t + 5)$ (mod11).

Therefore, E is supersingular if and only if $\lambda = -1, 2, -5$ or $\lambda^2 - \lambda + 1 = 0$ if and only if $j = 2^8 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2 (\lambda - 1)^2} = 0$ or 1 = 1728.

THEOREM 7.4. Let $p \ge 5$, $E: y^2 = x^3 + 1$. Then, E is supersingular if and only if $p \equiv 2 \pmod{3}$. E is non-supersingular if and only if $p \equiv 1 \pmod{3}$.

Proof. We must compute the coefficient of x^{p-1} in $(x^3 + 1)^m$ where $m = \frac{p-1}{2}$.

$$(x^3+1)^m = \sum_{k=0}^m \binom{m}{k} x^{3k}.$$

If $p \equiv 2 \pmod{3}$, then there exists no such k.

Hence, $(x^3+1)^m$ has no term of x^{p-1} .

Therefore, E is supersingular.

If $p \equiv 1 \pmod{3}$, then the coefficient of x^{p-1} is $\binom{m}{k} = m(m-1)$

1)
$$\cdots$$
 $(m-k+1) \neq 0$ in $\overline{\mathbb{F}}_p$. Here, $k = \frac{p-1}{3}$.

Therefore, E is non-supersingular.

THEOREM 7.5. Let $p \ge 3$, $E: y^2 = x^3 + x$, j = 1728. Then E is supersingular if and only if $p \equiv 3 \pmod{4}$, E is non-supersingular if and only if $p \equiv 1 \pmod{4}$.

THEOREM (DEURING). Let char(K) = p. Then

$$\sum_{E: \text{supersingular}} \frac{1}{\sharp Aut(E)} = \frac{p-1}{24}.$$

Proof. Let p=2, then there exists unique supersingular curve $y^2 + y = x^3$. Also, there exists 24 automorphisms on E if j=0.

Let $p \neq 2$ and let $E; y^2 = x(x-1)(x-\lambda)$. Now, the Deuring polynomial $H_p(t)$ has distinct m roots. Also, j is a supersingular j-invariant if and only if $H_p(\lambda) = 0$.

j-invariant if and only if $H_p(\lambda) = 0$. Hence, there exists $\frac{p-1}{2}$ supersingular over K.

Now,
$$j(\lambda) = 2^8 \frac{(\lambda^2 - \overline{\lambda} + 1)^3}{\lambda^2 (\lambda - 1)^2}$$
.

This map has degree 6 with ramification at ∞ , 0, 12³.

The reason is following;

If $\lambda \neq \infty$, then $j = \infty$, and

 $j'(\lambda) = 0$ if and only if λ is ramification, and hence

$$3(\lambda^2 - \lambda + 1)^2 (2\lambda - 1)\lambda^2 (\lambda - 1)^2 = (\lambda^2 - \lambda + 1)^3 2\lambda(\lambda - 1)(2\lambda - 1),$$
 i.e.,

$$\lambda=0, \lambda-1=0, \lambda=\frac{1}{2}, \lambda^2-\lambda+1=0 \text{ or } 3\lambda(\lambda-1)=2(\lambda^2-\lambda+1), \text{ i.e.,}$$

$$\lambda = 0, \pm 1, 2, \frac{1}{2} \text{ or } \lambda^2 - \lambda + 1 = 0.$$

If $\lambda^2 - \lambda + 1 = 0$, then $j = 0$.

If $\lambda = 0, 1$, then $j = \infty$.

If $\lambda = -1, 2, \frac{1}{2}$, then j = 1728.

If $j(\lambda) = j$ is supersingular with $j \neq \infty, 0, 1728$, then there exists 6 λ 's with $j(\lambda) = j$.

If j=0, then 2 λ 's and if $j=\infty$ or 1728 then 3 λ 's $(j\neq\infty,$ since $\lambda\neq0,1,\infty$).

Now,

$$\frac{p-1}{2} = \sum_{\lambda: \text{supersingular}} 1 = 6 \sum_{\substack{E_{\lambda}: \text{supersingular} \\ j \neq 0, 1728}} 1 + 3\alpha + 2\beta.$$

Here,

$$\alpha = \left\{ egin{array}{ll} 0 & \mbox{if } j = 1728 & \mbox{(ordinary)}, \ 1 & \mbox{if } j = 1728 & \mbox{(supersingular)}. \end{array} \right.$$

$$\beta = \begin{cases} 0 & \text{if } j = 0 \text{ (ordinary),} \\ 1 & \text{if } j = 0 \text{ (supersingular).} \end{cases}$$

Therefore,

$$\frac{p-1}{24} = \sum_{\substack{E_{\lambda}: \text{supersingular} \\ j \neq 0, 1728}} \frac{1}{2} + \frac{\alpha}{4} + \frac{\beta}{6}.$$

If $j \neq 0, 1728$, $Aut(E) = \{\pm 1\}$. Therefore, | Aut(E) | = 2. If j = 0, | Aut(E) | = 6. If j = 1728, | Aut(E) | = 4.

Here,
$$\frac{p-1}{24} = \sum_{E: \text{supersingular}} \frac{1}{|\text{Aut}(E)|}$$
.

REMARKS.

- (1) Let E/\mathbb{Q} . Then there exist infinitely many prime p such that E/\mathbb{F}_p is ordinary.
- (2) Let E/\mathbb{Q} . Then there exists infinitly many prime p such that E/\mathbb{F}_p is supersingular.([2])
- (3) Let E be CM. Then, the density of supersingular primes is 0, i.e.,

 $\lim_{x \to 0} \sharp \{p < x : \text{ supersingular prime } \}/\sharp \{p < x : p : \text{ is prime } \} = 0.$

(4) Conjecture (Lang-Trotter[8])

 $\sharp \{p < x : p \text{ is a supersingular prime } \} \sim c\sqrt{x}/\log x \text{ as } x \to \infty.$

8. Sphere packings and kissing numbers

Pack \mathbb{R}^n with balls of equal radius r > 0, not overlapping. Then, we define the density

$$\rho = \lim_{\substack{D: \text{ box} \\ \text{vol}(D) \to \infty}} \frac{\text{vol}(P \cap D)}{\text{vol}(D)} \le 1,$$

and define the kissing number

 $\tau =$ the number of balls touching a fixed ball.

PROBLEM. Maximize ρ and τ for a given n.

The best packing is the packing that ρ is the maximum.

EXAMPLE. If n = 1, then $\rho = 1$, $\tau = 2$.

EXAMPLE. If n=2,

- (1) square lattice packing (\mathbb{Z}_2 -lattice packing) : $\rho = \frac{\pi}{4}$, $\tau = 4$ (not best).
- (2) hexagonal lattice packing (A₂-lattice packing) : $\rho = \frac{\pi}{2\sqrt{3}}$, $\tau = 6$ (best packing)

EXAMPLE. If n=3, the face centered cubic lattice packing $(A_3$ -packing) has $\rho=\frac{\pi}{\sqrt{18}}$, $\tau=12$. This is the best packing proved by Hsiang (1990).

When n = 3, in 1694, I. Newton believed $\tau = 12$.

In 1694, D. Gregory believed $\tau = 13$.

In 1874, Bender, Hoppe and in 1875, Günther proved $\tau = 12$.

9. Lattice packings

Let v_1, v_2, \dots, v_n be linearly independent vectors in \mathbb{R}^N . (Here, we assume $N \geq n$, and usually N = n). Let $L = \mathbb{Z}v_1 + \dots + \mathbb{Z}v_n$ be a lattice.

The lattice packing is the sphere packing centered at L.

EXAMPLE. Let $\mathbb{Z}_n = \mathbb{Z}^n$ be the *n*-dimensional cubic (or integer) lattice. Then $\tau = 2n$.

Take $r=\frac{1}{2}$, then

$$\rho_n = \text{vol } B_n(\frac{1}{2}) = v_n(\frac{1}{2}) = \frac{v_n}{2^n},$$

where $B_n(r) = \{x \in \mathbb{R}^n | ||x|| < r\}, v_n(r) = \text{vol } B_n(r) \text{ and } v_n = v_n(1)$.

LEMMA.
$$v_n = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$$

Proof. For any $n, r, v_n(r) = r^n v_n$.

Consider the unit n-ball

$$x_1^2 + \cdots + x_{n-1}^2 + x_n^2 = 1.$$

If
$$r = \sqrt{1 - x_n^2}$$
, then

$$v_{n} = \int_{-1}^{1} v_{n-1}(r) dx_{n}$$

$$= 2 \int_{0}^{1} r^{n-1} v_{n-1}(r) dx_{n}$$

$$= 2v_{n-1} \int_{0}^{1} (\sqrt{1-x_{n}^{2}})^{n-1} dx_{n}$$

$$= 2v_{n-1} \int_{0}^{1} (\sqrt{1-t})^{\frac{n-1}{2}} \frac{dt}{2\sqrt{t}} \quad (\text{ where } t = x_{n}^{2})$$

$$= v_{n-1} \beta \left(\frac{n+1}{2}, \frac{1}{2}\right)$$

$$= v_{n-1} \frac{\Gamma(\frac{n+1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{n+2}{2})}.$$

Now, $v_1 = 2$, hence,

$$v_{n} = \frac{\Gamma(\frac{n+1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{n+2}{2})} \frac{\Gamma(\frac{n}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{n+1}{2})} \cdots \frac{\Gamma(\frac{3}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{5}{2})} v_{1}$$

$$= \frac{\Gamma(\frac{1}{2})^{n-1}\Gamma(\frac{3}{2})}{\Gamma(\frac{n+1}{2})} \cdot 2$$

$$= \frac{\Gamma(\frac{1}{2})^{n-1}\frac{1}{2}\Gamma(\frac{1}{2})}{\Gamma(\frac{n+1}{2})} \cdot 2$$

$$= \frac{\Gamma(\frac{1}{2})^{n}}{\Gamma(\frac{n+1}{2})} = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}.$$

This proves the theorem.

Let $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$ be a lattice in \mathbb{R}^n and let

$$r = \frac{1}{2} ||l||_{\min} = \frac{1}{2} \sqrt{\langle l, l \rangle}_{\min}.$$

Then,

$$\rho = \lim_{\text{vol}(D) \to \infty} \frac{v_n(r) \sharp (L \cap D)}{\text{vol}(D)}.$$

The volume of fundamental domain
$$= \operatorname{vol}(\mathbb{R}^n/L)$$

$$= \frac{\operatorname{vol}(D)}{\sharp(L \cap D)}$$

$$= |\det(v_1, v_2, \cdots, v_n)|$$

Therefore,

$$\rho = \lim_{\text{vol}(D) \to \infty} r^n v_n \frac{1}{|\det(v_1, v_2, \cdots, v_n)|}$$

$$= \frac{v_n}{2^n} (\sqrt{\langle l, l \rangle_{\min}})^n \frac{1}{|\det(v_1, v_2, \cdots, v_n)|}$$

$$= \rho_n \mu(L)^{n/2},$$

where $\mu(L) = \frac{\langle l, l \rangle_{\min}}{\sqrt[n]{\det(L)}}$ and $\det(L) = \det(\langle v_i, v_j \rangle) = \det(v_1, \dots, v_n)^2$.

PROBLEM. Maximize $\mu(L)$ over all lattice in \mathbb{R}^n . This is the best lattice packing

EXAMPLE
$$(A_2$$
-LATTICE).
$$\mu(L) = \frac{1}{|L|} = \frac{2}{\sqrt{3}}, \text{ where } L = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}.$$
 Hence, $\rho = \rho_2 \mu(L)^{2/2} = \frac{\pi}{4} \frac{2}{\sqrt{3}} = \frac{\pi}{2\sqrt{3}}.$

EXAMPLE (A_3 -LATTICE).

$$\mu(L) = |L|^{-2/3} = (\sqrt{2})^{2/3}, \text{ where } L = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{6} & \sqrt{\frac{2}{3}} \end{bmatrix}.$$
 $ho =
ho_3 \mu(L)^{3/2} = \frac{\frac{4}{3}\pi}{2^3} \sqrt{2} = \frac{\pi}{\sqrt{18}}.$

Now, $\mathbb{R}^*O_n(\mathbb{R}) \setminus GL_n(\mathbb{R})/GL_n(\mathbb{Z}) \xrightarrow{\mu} \mathbb{R}$ is the space of all lattices in \mathbb{R}^n up to orthogonal (conformal) equivalence, where $\mu(\alpha L) = \mu(L)$ for all $\alpha \in \mathbb{R}^*$.

EXAMPLE. If n=2, then

$$\mathbb{R}^* SO_2 = \mathbb{C}^* \setminus GL_2(\mathbb{R})/GL_2(\mathbb{Z}) \text{ and } \mu = \frac{1}{\text{Im}\tau}.$$
Hence, $\mu_{\text{max}} = \frac{2}{\sqrt{3}}$ and $\rho = \rho_2 \mu(L)^{2/2} = \frac{\pi}{\sqrt{12}}.$

Best lattice packings for $n \leq 8$.

$$\begin{pmatrix} n = & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \text{Lattice} = & \mathbb{Z} & A_2 & A_3 & D_4 & D_5 & E_6 & E_7 & E_8 \\ \det L = & 2 & 3 & 4 & 4 & 4 & 3 & 2 & 1 \end{pmatrix},$$

when n = 1, 2, 3, they are the best sphere packing.

Here, $A_n = \{(x_0, x_1, \dots, x_n) \in \mathbb{Z}^{n+1} \mid x_0 + \dots + x_n = 0\}$ $D_n = \{(x_1, \dots, x_n) \in \mathbb{Z}^n \mid x_1 + \dots + x_n \text{ is even}\}.$ If n = 3, $A_3 \approx D_3$.

For $n \equiv 0 \pmod{8}$,

$$E_{n} = \{(x_{1}, \dots, x_{n}) \in \mathbb{Z}^{n} \mid \sum x_{i} \equiv 0 \pmod{2}\} + \mathbb{Z}\left(\frac{1}{2}, \dots, \frac{1}{2}\right)$$
$$= \{(x_{1} + \frac{1}{2}, \dots, x_{n} + \frac{1}{2}) \mid x_{i} \in \mathbb{Z}, \sum x_{i} \equiv 0 \pmod{2}.\}$$

$$E_7 = \{x \in E_8 : x_7 = x_8\}$$

$$E_6 = \{x \in E_8 : x_6 = x_7 = x_8\}$$

For 8 < $n \leq$ 24, the Leech lattice Λ_{24} and its slices are conjectured "best".

10. Algebraic lattices

An algebraic lattice is a free \mathbb{Z} -module L of rank n with $Q:L\longrightarrow \mathbb{Z}$ positive-definite quadratic form $Q:L\longrightarrow \mathbb{Z}$.

THEOREM 10.1. Let E, E' be elliptic curves over K and L = Hom(E', E).

If $K = \mathbb{C}$, E' = E with $j_E = 0$, then, $L \cong A_2$ -lattice. If $K = \mathbb{F}_4$, E' = E with $j_E = 0$, then, $L \cong D_4$ -lattice.

Proof. If we let $Q(\phi) = \deg \phi$, then Q is a positive-definite quadratic form. Hence we clearly get the result.

For example, if

$$E: y^2 = x^3 + 1, j = -1728 \frac{(4a)^3}{\Delta} = 0,$$

then $\operatorname{End}(E) \cong A_2$.

And, if $E: y^2 = x^3 + x$, then $\operatorname{End}(E) \cong D_4$. Now,

$$L = \text{Hom}(E', E)$$

$$= \{ \phi : E' \longrightarrow E \mid \phi(0') = 0 \}$$

$$= \text{Mor}_k(E', E) / \{ \text{translations} \}.$$

Let E' be given by g(u, v) = 0, and let $\phi(u, v) = (x, y)$ with x = R(u, v), y = S(u, v) where R, S are rational functions in u, v such that f(R, S) = 0.

Hence, $Mor(E', E) \cong E(K(E'))$ and $\{ \text{ constant maps } \} \cong E(K)$.

Therefore, $L \cong E(K(E'))/E(K) \cong \operatorname{Mor}_K(E', E)/\{\text{constants}\}.$

Replace E' by a curve X of any genus g. Then, L is a free abelian group of rank $\leq 4g$ with $Q(\phi) = \deg \phi$.

Let J be an abelian variety of dim g (or, J = Jacobian of E). Then, L = Hom(J, E) has rank $L = (\sharp \text{ of occurences of } E \text{ in } J)$ rank $(\text{End}(E)) \leq 4g$.

For example, take $J = E^g$.

Consequently, we have the following theorem.

THEOREM 10.2. Let J be an abelian variety of dimension g. Then L = Hom(J, E) has rank $\leq 4g$.

THEOREM 10.3. Let $x^3y + y^3z + z^3x = 0$ be Klein quartic. If $K = \mathbb{C}$, L has rank 6.

Then $J \cong E^3$ and $j = -3^3 \cdot 5^3$.

This is a curve with complex multiplication by D = -7.

If $K = \mathbb{C}$ then L has rank = 6, $\det L = 7^3$ and $\langle l, l \rangle_{\min} = 4$.

THEOREM 10.4. In characteristic p > 0, $J = E^g$, E is supersingular over \mathbb{F}_q with $q = p^f$. Then, rank of Hom(J, E) is 4g.

Proof. $X: x^{q+1} + y^{q+1} + z^{q+1} = 0$ has a non-trivial automorphism, via $\alpha \mapsto \alpha^q = \overline{\alpha}$.

Take
$$g = \frac{q(q-1)}{2}$$
.

Then, $N(X/\mathbb{F}_{q^2}) = q^3 + 1$, and $G = PU_3(q)$ acts on X. If $q \equiv 2 \pmod{3}$,

 $E: u^3 + v^3 + w^3 = 0$ is supersingular in char p.

There exists a map

$$x^{q+1} + y^{q+1} + z^{q+1} = 0 \longrightarrow u^3 + v^3 + w^3 = 0$$

where $u = x^{\frac{q+1}{3}}, v = y^{\frac{q+1}{3}}, \omega = z^{\frac{q+1}{3}}$.

Therfore, $\text{Hom}(J, E) \neq 0$ and rank is 2q(q-1) = 4g.

COROLLARY. Let p = 2 and $q = 2^2 = 4$.

 $X: x^5 + y^5 + z^5, \tilde{E}: y^2 = x^3 + x$. Then, g = 6,

L = Hom(X, E) has rank 24.

Then, $L \cong \Lambda_{24}$.

References

- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer- Verlag, 1988.
- 2. N. Elkies, The existence of infinite many supersingular primes for every elliptic curve over Q, Invent. Math. 89 (1987), 561-567.
- 3. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366.

- Husemoller, D., Symetric Bilinear Forms, Springer-Verlag, New York, 1973.
- 5. _____, Elliptic Curves, Springer-Verlag, New York, 1987.
- 6. Lang, S., Algebraic Number Theory, Addison-Wesley, 1970.
- 7. _____, Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983.
- 8. Silverman, J. H., The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106, New York, 1986.
- 9. J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.