STRONG HOMOLOGY GROUPS W.R.T. $\sum_{p \in \mathbb{Z}} \bar{C}^p(\mathcal{X}; R)$

HONG-JAE LEE AND DAE-WOONG LEE

Dept. of Mathematics, Chonbuk National University, Chonju 561-756, Korea.

1. Introduction

Strong homology group, a new type of homology, of inverse systems (of pairs) was introduced by J. T. Lisica and S. Mardešić ([2],[3]). This group also defined in the category invTop of inverse systems of topological spaces and the related category proTop and the coherent pro-homotopy category cphTop. Some desirable results are appeared in the previous papers([4],[5]).

In this paper, we define a strong evaluation map and strong cup product of strong cochain groups. As a consequence of these definitions and well known facts, we construct a strong cochain ring $\sum_{p\in\mathbb{Z}} \tilde{C}^p(\mathcal{X};R)$ and a ring homomorphism.

2. Some Properties of (Relative) Strong Homology Groups

Let $\mathcal{X}=(X_{\alpha},p_{\alpha\alpha'},D)$ be an inverse system of topological spaces X_{α} and continuous maps $p_{\alpha\alpha'}:X_{\alpha'}\to X_{\alpha},\ \alpha\leq\alpha',$ over a directed set D. Let $D^n,n\geq 0$, be the set of all $a=(\alpha_0,\alpha_1,\cdots,\alpha_n),\ \alpha_0\leq\alpha_1\leq\cdots\leq\alpha_n,\alpha_i\in D$ and G be an abelian group. If $n\geq 1,0\leq j\leq n$ and $a=(\alpha_0,\alpha_1,\cdots,\alpha_n)\in D^n,$ let $a_j\in D^{n-1}$ be obtained from $a=(\alpha_0,\alpha_1,\cdots,\alpha_n)$ by deleting the j-th factor α_j . For an integer p, a strong p-chain [2] of $\mathcal X$ with coefficients in G is defined by a function x which assigns

Received May 1, 1997.

The second author was supported by Korea Research Foundation, Ministry of Education, 1997.

to every $n \geq 0$ and every $a = (\alpha_0, \alpha_1, \dots, \alpha_n) \in D^n$, a singular (p+n)-chain $x_a \in C_{p+n}(X_a; G)$, where X_a is defined by X_{α_0} . The sum x+y of two strong p-chains of \mathcal{X} is given by $(x+y)_a = x_a + y_a, a \in D^n$. Strong p-chains form an abelian group $\bar{C}_p(\mathcal{X}; G)$ which is called strong p-chain group of \mathcal{X} with coefficients in G. That is to say,

$$\bar{C}_p(\mathcal{X};G) = \prod_{n=0}^{\infty} \prod_{a \in D^n} C_{p+n}(X_a;G),$$

where $C_{p+n}(X_a; G)$ is a (p+n)-chain group of $X_a = X_{\alpha_0}$. A boundary operator $d_p : \bar{C}_{p+1}(\mathcal{X}; G) \to \bar{C}_p(\mathcal{X}; G)$ was defined by

$$\begin{cases} (d_p(x))_{(\alpha_0)} = \partial(x_{(\alpha_0)}) \text{ for } n = 0\\ (-1)^n (d_p x)_a = \partial(x_a) - p_{\alpha_0 \alpha_1}(x_{a_0}) - \sum_{j=1}^n (-1)^j x_{a_j} \text{ for } n \ge 1, \end{cases}$$

where $x \in \bar{C}_{p+1}(\mathcal{X}; G)$. Note that $d_p \circ d_{p+1} = 0$, $p \geq -n$ so that (\bar{C}, d) is a chain complex. The *p-dimensional strong homology group* $\bar{H}_p(\mathcal{X}; G)$ of the inverse system $\mathcal{X} = (X_\alpha, p_{\alpha\alpha'}, D)$ with coefficients in G is defined by the homology group of this chain complex (\bar{C}, d) , i.e.,

$$\bar{H}_p(\mathcal{X};G) = \ker(d_{p-1}: \bar{C}_p(\mathcal{X};G) \to \bar{C}_{p-1}(\mathcal{X};G)) / \\ \operatorname{im}(d_p: \bar{C}_{p+1}(\mathcal{X};G) \to \bar{C}_p(\mathcal{X};G)).$$

DEFINITION 2.1. The *p*-dimensional strong cochain group $\bar{C}^p(\mathcal{X}; G)$ of the inverse system \mathcal{X} with coefficients in G is defined by

$$\bar{C}^p(\mathcal{X};G) = Hom(\bar{C}_p(\mathcal{X}),G).$$

. The coboundary operator $\delta: \bar{C}^p(\mathcal{X};G) \to \bar{C}^{p+1}(\mathcal{X};G)$ is defined to be the dual homomorphism of the boundary operator $d: \bar{C}_{p+1}(\mathcal{X}) \to \bar{C}_p(\mathcal{X})$.

We consider inverse system $(\mathcal{X}, \mathcal{A}) = ((X, A)_{\alpha}, p_{\alpha\alpha'}, D)$ of pair of spaces and maps of pairs, where $(X, A)_{\alpha} = (X_{\alpha}, A_{\alpha}), A_{\alpha} \subset$

 X_{α} . We also consider the inverse system $\mathcal{A}=(A_{\alpha},p_{\alpha\alpha'}|_{A_{\alpha'}},D)$ of topological subspace A_{α} of X_{α} for each $\alpha\in D$ and continuous maps $p_{\alpha\alpha'}|_{A_{\alpha'}}$ over the same directed set D. We can view the strong chain group $\bar{C}^p(\mathcal{A};G)$ as a subgroup of $\bar{C}^p(\mathcal{X};G)$ and the boundary operator $d_{\mathcal{A}}:\bar{C}_p(\mathcal{A};G)\to\bar{C}_{p-1}(\mathcal{A};G)$ as a restriction map $d_{\mathcal{A}}=d|_{\bar{C}_p(\mathcal{A};G)}$. The relative strong chain group $\bar{C}^p(\mathcal{X},\mathcal{A};G)$ of $(\mathcal{X},\mathcal{A})$ with coefficents in G is defined by

$$\bar{C}_p(\mathcal{X}, \mathcal{A}; G) = \bar{C}_p(\mathcal{X}; G) / \bar{C}_p(\mathcal{A}; G).$$

Similarly, the relative strong homology group $\bar{H}_p(\mathcal{X}, \mathcal{A}; G)$ of $(\mathcal{X}, \mathcal{A})$ with coefficients in G is defined by

$$\bar{H}_p(\mathcal{X}, \mathcal{A}; G) = \ker(d_{p-1} : \bar{C}_p(\mathcal{X}, \mathcal{A}; G) \to \bar{C}_{p-1}(\mathcal{X}, \mathcal{A}; G)) / \\
\operatorname{im}(d_p : \bar{C}_{p+1}(\mathcal{X}, \mathcal{A}; G) \to \bar{C}_p(\mathcal{X}, \mathcal{A}; G)).$$

Let $\mathcal{Y} = (Y_{\beta}, q_{\beta\beta'}, E)$ be an inverse system of topological spaces Y_{β} and continuous maps $q_{\beta\beta'}: Y_{\beta'} \to Y_{\beta}, \beta \leq \beta'$ over a directed set E and let $f: \mathcal{X} \to \mathcal{Y}$ be a map of inverse systems given by an increasing function $\varphi: E \to D$ and continuous maps $f_{\beta}: X_{\varphi(\beta)} \to Y_{\beta}, \beta \in E$, and the following diagram

$$X_{\varphi(\beta')} \xrightarrow{p_{\varphi(\beta)\varphi(\beta')}} X_{\varphi(\beta)}$$
 $f_{\beta'} \downarrow \qquad \qquad f_{\beta} \downarrow$
 $Y_{\beta'} \xrightarrow{q_{\beta\beta'}} Y_{\beta}$

commutes for $\beta \leq \beta'$. f induces a chain map $f_{\sharp}: \bar{C}_{\sharp}(\mathcal{X}; G) \rightarrow \bar{C}_{\sharp}(\mathcal{Y}; G)$, given by the homomorphisms

$$(f_{\sharp}x)_{(\beta_0,\beta_1,\cdots,\beta_n)}=f_{\beta_0\sharp}(x_{\varphi(\beta_0)\varphi(\beta_1),\cdots,\varphi(\beta_n)}),\ (\beta_0,\beta_1,\cdots,\beta_n)\in E^n$$

Let $(\mathcal{X}, \mathcal{A}, \mathcal{B}) = ((X, A, B)_{\alpha}, p_{\alpha\alpha'}, D)$ be an inverse system of traids, where $(X, A, B)_{\alpha} = (X_{\alpha}, A_{\alpha}, B_{\alpha}), A_{\alpha}, B_{\alpha} \subset X_{\alpha}$. Let $\bar{C}_p(\mathcal{A}; G) + \bar{C}_p(\mathcal{B}; G)$ denote the *p*-dimensional strong subchain group of $\bar{C}_p(\mathcal{X}; G)$ generated by $\bar{C}_p(\mathcal{A}; G) \cup \bar{C}_p(\mathcal{B}; G)$.

Let $\mathcal{A} = (A_{\alpha}, p_{\alpha\alpha'}|_{A_{\alpha'}}, D)$ and $\mathcal{B} = (B_{\alpha}, p_{\alpha\alpha'}|_{B_{\alpha'}}, D)$ be two inverse systems

DEFINITION 2.2. The pair (A, B) of inverse systems is said to be strong excisive couple if the inclusion chain map

$$\bar{C}_{\sharp}(\mathcal{A};G) + \bar{C}_{\sharp}(\mathcal{B};G) \hookrightarrow \bar{C}_{\sharp}(\mathcal{A} \cup \mathcal{B};G)$$

induces an isomorphism of strong homology group.

PROPOSITION 2.3. (A, B) is a strong excisive couple if and only if the inclusion $j: (A, A \cap B) \hookrightarrow (A \cup B, B)$ induces an isomorphism of strong homology groups.

proof. Consider the commutative diagram of chain maps

$$\begin{array}{ccc} \bar{C}_{\sharp}(\mathcal{A},\mathcal{A}\cap\mathcal{B};G) & \xrightarrow{j_{\sharp}} & \bar{C}_{\sharp}(\mathcal{A}\cup\mathcal{B},\mathcal{B};G) \\ & & \downarrow & & \parallel \\ \\ [\bar{C}_{\sharp}(\mathcal{A};G) + \bar{C}_{\sharp}(\mathcal{B};G)]/\bar{C}_{\sharp}(\mathcal{B};G) & \xrightarrow{j'_{\sharp}} & \bar{C}_{\sharp}(\mathcal{A}\cup\mathcal{B},\mathcal{B};G) \end{array}$$

induced by inclusions. By the Noether isomorphism theorem [6], i_{\sharp} is an isomorphism. Therefore $j_{*}=j_{*}^{'}\circ i_{*}:\bar{H}_{*}(\mathcal{A},\mathcal{A}\cap\mathcal{B};G)\to \bar{H}_{*}(\mathcal{A}\cup\mathcal{B},\mathcal{B};G)$ is an isomorphism if and only if $j_{*}^{'}$ is an isomorphism. If we use the following strong homology exact sequence of pair [3] and five lemma;

$$\cdots \to \bar{H}_{p}(\mathcal{B};G) \to \bar{H}_{p}(\mathcal{A} + \mathcal{B};G) \to \bar{H}_{p}(\mathcal{A} + \mathcal{B};G) \to \bar{H}_{p-1}(\mathcal{B};G) \to \cdots$$

$$\parallel \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$\cdots \to \bar{H}_{p}(\mathcal{B};G) \to \bar{H}_{p}(\mathcal{A} \cup \mathcal{B};G) \to \bar{H}_{p}(\mathcal{A} \cup \mathcal{B},\mathcal{B};G) \to \bar{H}_{p-1}(\mathcal{B};G) \to \cdots$$

then we see that $j'_*: \bar{H}_p(\mathcal{A}+\mathcal{B},\mathcal{B};G) \to \bar{H}_p(\mathcal{A}\cup\mathcal{B},\mathcal{B};G)$ is an isomorphism if and only if the inclusion $j'_{1\sharp}: \bar{C}_p(\mathcal{A};G) + \bar{C}_p(\mathcal{B};G) \hookrightarrow \bar{C}_p(\mathcal{A}\cup\mathcal{B};G)$ induces an isomorpism $j'_{1*}: \bar{H}_p(\mathcal{A}+\mathcal{B};G) \to \bar{H}_p(\mathcal{A}\cup\mathcal{B};G)$ of strong homology groups. The proof follows from this fact and the definition of strong excisive couple.

DEFINITION 2.4. An inverse system $\mathcal{A}=(A_{\alpha},p_{\alpha\alpha'}|_{A_{\alpha'}},D)$ is called a *strong retract* of the inverse system $\mathcal{X}=(X_{\alpha},p_{\alpha\alpha'},D)$ if A_{α} is a subspace of X_{α} and the inclusion map $s_{\alpha}:A_{\alpha}\hookrightarrow X_{\alpha}$ has a left inverse $r_{\alpha}:X_{\alpha}\hookrightarrow A_{\alpha}$ for each $\alpha\in D$.

PROPOSITION 2.5. If $A = (A_{\alpha}, p_{\alpha\alpha'}|_{A_{\alpha'}}, D)$ is a strong retract of \mathcal{X} , then we have the following;

$$\bar{H}_*(\mathcal{X};G) \cong \bar{H}_*(\mathcal{A};G) \oplus \bar{H}_*(\mathcal{X},\mathcal{A};G).$$

Proof. We can consider the following strong homology long exact sequence ([1],[3],[6])

$$\cdots \longrightarrow \bar{H}_p(\mathcal{A};G) \xrightarrow{s_*} \bar{H}_p(\mathcal{X};G) \xrightarrow{t_*} \bar{H}_p(\mathcal{X},\mathcal{A};G) \xrightarrow{\partial} \bar{H}_{p-1}(\mathcal{A};G) \longrightarrow \cdots$$

induced by inclusions $s: \mathcal{A} \hookrightarrow \mathcal{X}$ and $t: (\mathcal{X}, \phi) \hookrightarrow (\mathcal{X}, \mathcal{A})$. Since $r_{\alpha} \circ s_{\alpha} = I_{A_{\alpha}}$ for each $\alpha \in D$, that is to say $r \circ s = (\cdots, r_{\alpha}, \cdots) \circ (\cdots, s_{\alpha}, \cdots) = (\cdots, I_{A_{\alpha}}, \cdots) = I_{\mathcal{A}}$, we have $r_{*} \circ s_{*} = I_{\bar{H}_{p}(\mathcal{A};G)}$. This shows that s_{*} is a monomorphism and the boundary operator ∂ is trivial. Thus we easily obtain the following split exact sequence

$$0 \to \bar{H}_p(\mathcal{A}; G) \xrightarrow{s_*} \bar{H}_p(\mathcal{X}; G) \xrightarrow{t_*} \bar{H}_p(\mathcal{X}, \mathcal{A}; G) \to 0$$

Therefore, we complete the proof.

3. A Ring $\sum_{p\in\mathbb{Z}} C^p(\mathcal{X}, R)$ with Unity $e_{\mathcal{X}}$

DEFINITION 3.1. Define a strong evaluation map

$$<,>: Hom(\bar{C}_p(\mathcal{X}),G) \times \bar{C}_p(\mathcal{X}) \to G$$

by $\langle c^p, c_p \rangle_{(a,n)} = \langle c_a^{p+n}, c_{a,p+n} \rangle$ for each $a = (\alpha_0, \alpha_1, \dots, \alpha_n) \in D^n, n = 0, 1, 2, \dots$, where $c_a^{p+n}(\text{resp.}c_{a,p+n})$ is a (p+n)-cochain (resp. (p+n)-chain) on X_a .

It is easy to see that the strong evaluation map <,> is bilinear. If $c^p \in \bar{C}^p(\mathcal{X};G)$ and $c_{p+1} \in \bar{C}_{p+1}(\mathcal{X})$, then

$$<\delta c^{p}, c_{p+1}> = < c^{p}, dc_{p+1}>$$

and if $c_p \in \bar{C}_p(\mathcal{X})$ and $f : \mathcal{X} \to \mathcal{Y} = (Y_\alpha, q_{\alpha\alpha'}, D)$ is a map of inverse systems, then we have

$$< f^{\sharp}(c^p), c_p > = < c^p, f_{\sharp}(c_p) > .$$

Let R be a commutative ring with unity 1.

DEFINITION 3.2. Define a map

$$\bar{\cup}: \bar{C}^p(\mathcal{X};R) \times \bar{C}^q(\mathcal{X};R) \to \bar{C}^{p+q}(\mathcal{X};R)$$

by

$$< c^p \cup c^q, T>_{(a,n)} = < c^p, T_p>_{(a,i)} \cdot < c^q, T_q>_{(a,j)}$$

for each $a=(\alpha_0,\alpha_1,\cdots,\alpha_n)\in D^n, i,j,n=0,1,2,\cdots,i+j=n,$ where T is a strong (p+q)-simplex and $T_p(\text{resp.}T_q)$ denotes the strong p(resp.q)-simplex of the inverse system \mathcal{X} . The strong cochain $c^p \bar{\cup} c^q$ is called the *strong cup product* of the strong cochains c^p and c^q .

LEMMA 3.3. The map $\overline{\cup}$ is bilinear.

Proof. Let $c_1^p, c_2^p \in \bar{C}^p(\mathcal{X}; R)$ and $c_1^q, c_2^q \in \bar{C}^q(\mathcal{X}; R)$. If T is a strong (p+q)-simplex, then we obtain

$$\begin{split} &< c_1^p \bar{\cup} (c_1^q + c_2^q), T>_{(a,n)} \\ &= < c_1^p, T_p>_{(a,i)} \cdot < (c_1^q + c_2^q), T_q>_{(a,j)} \\ &= < c_1^p, T_p>_{(a,i)} \cdot [< c_1^q, T_q>_{(a,j)} + < c_2^q, T_q>_{(a,j)}] \\ &= [< c_1^p, T_p>_{(a,i)} \cdot < c_1^q, T_q>_{(a,j)}] + [< c_1^p, T_p>_{(a,i)} \cdot < c_2^q, T_q>_{(a,j)}] \\ &= [< c_1^p \bar{\cup} c_1^q, T>_{(a,n)}] + [< c_1^p \bar{\cup} c_2^q, T>_{(a,n)}] \end{split}$$

and

$$< (c_1^p + c_2^p) \bar{\cup} c_1^q, T>_{(a,n)}$$

$$= < (c_1^p + c_2^p), T_p>_{(a,i)} \cdot < c_1^q, T_q>_{(a,j)}$$

$$= [< c_1^p, T_p>_{(a,i)} + < c_2^p, T_p>_{(a,i)}] \cdot < c_1^q, T_q>_{(a,j)}$$

$$= [< c_1^p, T_p>_{(a,i)} \cdot < c_1^q, T_q>_{(a,j)}] + [< c_2^p, T_p>_{(a,i)} \cdot < c_1^q, T_q>_{(a,j)}]$$

$$= < c_1^p \bar{\cup} c_1^q, T>_{(a,n)} + < c_2^p \bar{\cup} c_1^q, T>_{(a,n)}$$

for each $a \in D^n$, i + j = n and $i, j, n = 0, 1, 2, \cdots$. That is to say,

$$c_1^p \bar{\cup} (c_1^q + c_2^q) = (c_1^p \bar{\cup} c_1^q) + (c_1^p \bar{\cup} c_2^q)$$

and

$$(c_1^p + c_2^p)\bar{\cup}c_1^q = (c_1^p\bar{\cup}c_1^q) + (c_2^p\bar{\cup}c_1^q).$$

These complete the proof of the lemma.

THEOREM 3.4. $\sum_{p\in\mathbb{Z}} \bar{C}^p(\mathcal{X};R)$ is a ring with unity $e_{\mathcal{X}}$ under the strong cup product.

Proof. we now consider the associative law and unity. If $c^p \in \bar{C}^p(\mathcal{X};R)$, $c^q \in \bar{C}^q(\mathcal{X};R)$, $c^k \in \bar{C}^k(\mathcal{X};R)$ and if σ is a strong (p+q+k)-simplex, then we see that

$$< c^p \bar{\cup} (c^q \bar{\cup} c^k), \sigma>_{(a,n)} = < c^p, \sigma_p>_{(a,i)} \cdot < (c^q \bar{\cup} c^k), \sigma_{(q+k)}>_{(a,j)}$$
 and

$$<(c^q \cup c^k), \sigma_{(q+k)}>_{(a,j)} = < c^q, \sigma_q>_{(a,l)} \cdot < c^k, \sigma_k>_{(a,m)},$$

where $\sigma_q(\text{resp.}\sigma_k)$ denotes the strong q(resp.k)- simplex of $\mathcal{X}, l+m=j$ and $l, m=0,1,2,\cdots$. Therefore we obtain

$$< c^{p} \bar{\cup} (c^{q} \bar{\cup} c^{k}), \sigma >_{(a,n)}$$

$$= < c^{p}, \sigma_{p} >_{(a,i)} \cdot [< c^{q}, \sigma_{q} >_{(a,l)} \cdot < c^{k}, \sigma_{k} >_{(a,m)}]$$

$$= [< c^{p}, \sigma_{p} >_{(a,i)} \cdot < c^{q}, \sigma_{q} >_{(a,l)}] \cdot < c^{k}, \sigma_{k} >_{(a,m)}$$

$$= < c^{p} \bar{\cup} c^{q}, \sigma_{p+q} >_{(a,i+l)} \cdot < c^{k}, \sigma_{k} >_{(a,m)}$$

$$= < (c^{p} \bar{\cup} c^{q}) \cup c^{k}, \sigma >_{(a,i+l+m)}$$

$$= < (c^{p} \bar{\cup} c^{q}) \cup c^{k}, \sigma >_{(a,n)} .$$

Thus, the associative law is completed. Define $e_{\mathcal{X}} \in \bar{C}^0(\mathcal{X}; R)$ by

$$\langle e_{\mathcal{X}}, T \rangle_{(a,n)} = 1$$

for all strong 0-simplex T. Then we easily see that $e_{\mathcal{X}}$ is a unity on $\sum_{p\in\mathbb{Z}} \bar{C}^p(\mathcal{X};R)$. The lemma 3.3 shows that the condition of the distributive law is satisfied.

THEOREM 3.5. The map $f: \mathcal{X} \to \mathcal{Y}$ of inverse systems induces a ring homomorphism $f^{\sharp}: \sum_{p \in \mathbb{Z}} \bar{C}^p(\mathcal{Y}; R) \to \sum_{p \in \mathbb{Z}} \bar{C}^p(\mathcal{X}; R)$.

Proof. Let $e^p \in \bar{C}^p(\mathcal{Y}; R), e^q \in \bar{C}^q(\mathcal{Y}; R)$ and T be a strong (p+q)-simplex of the inverse system \mathcal{X} . Then we obtain

$$< f^{\sharp}(e^{p} \bar{\cup} e^{q}), T>_{(a,n)} = < e^{p} \bar{\cup} e^{q}, f_{\sharp}(T)>_{(a,n)}$$

$$= < e^{p}, f_{\sharp}T_{p}>_{(a,i)} \cdot < e^{q}, f_{\sharp}T_{q}>_{(a,j)}$$

$$= < f^{\sharp}(e^{p}), T_{p}>_{(a,i)} \cdot < f^{\sharp}(e^{q}), T_{q}>_{(a,j)}$$

$$= < f^{\sharp}(e^{p}) \bar{\cup} f^{\sharp}(e^{q}), T>_{(a,n)}$$

and

$$< f^{\sharp}(e_{1}^{p} + e_{2}^{p}), T>_{(a,n)} = < e_{1}^{p} + e_{2}^{p}, f_{\sharp}(T)>_{(a,n)}$$

$$= < e_{1}^{p}, f_{\sharp}T>_{(a,n)} + < e_{2}^{p}, f_{\sharp}T>_{(a,n)}$$

$$= < f^{\sharp}(e_{1}^{p}), T>_{(a,n)} + < f^{\sharp}(e_{2}^{p}), T>_{(a,n)}$$

$$= < f^{\sharp}(e_{1}^{p}) + f^{\sharp}(e_{2}^{p}), T>_{(a,n)}$$

for each $a=(\alpha_0,\alpha_1,\cdots,\alpha_n)\in D^n, i,j,n=0,1,2,\cdots,i+j=n.$ If $e_{\mathcal{X}}$ and $e_{\mathcal{Y}}$ are unities of $\sum_{p\in\mathbb{Z}}\bar{C}^p(\mathcal{X};R)$ and $\sum_{p\in\mathbb{Z}}\bar{C}^p(\mathcal{Y};R)$ respectively, then we see that

$$< f^{\sharp}(e_{\mathcal{Y}}), T>_{(a,n)} = < e_{\mathcal{Y}}, f_{\sharp}(T)>_{(a,n)} = 1.$$

for all strong 0-simplex T of the inverse system \mathcal{X} . Thus $f^{\sharp}(e_{\mathcal{Y}}) = e_{\mathcal{X}}$. Therefore, the map $f: \mathcal{X} \to \mathcal{Y}$ induces a ring homomorphism.

References

- 1. K. A. Lee, Foundation of Topology (Vol. 2), Hakmoonsa, Seoul, 1984.
- J. T. Lisica and S. Mardešić, Strong Homology of Inverse System of Spaces I, II, Topology and its Appl. 19 (1985), 29-64.
- 3. J. T. Lisica and S. Mardešić, Strong Homology of Inverse System of Spaces III, Topology and its Appl. 20 (1985), 29-37.
- 4. S. Mardešić and A. V. Parasolov, Strong Homology is not Additive, Trans. of the A.M.S. 307(2) (1988), 725-744.
- 5. S. Mardešić and T. Watanabe, Strong Homology and Dimension, Topology and its Appl. 29 (1988), 185-205.
- E. H. Spanier, Algebraic Topology, Mcgraw-Hill Book Co., New York, 1966.