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Geometrically Non-Linear Analysis
of Space Frames Considering Finite Rotations
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- INTRODUCTION

putational efficiency.
The development of structural finite elements The curved beam elements, derived from the

1)
and associated solutions for non-linear analysis degenerate shell element of Ahmad et al,” have

. . 26)
has received a considerable attention since the been usually taken as a starting point™ for re-

introduction of computer-oriented analysis. A cent developments of geometrically non-linear

analysis. However, these elements suffer from
24,10-12)

large number of beam, plate, and shell elements

. . . 79) :
have been proposed for non-linear analysis. shear locking and membrane locking.
13-17)

Among these elements, the degenerate elements These locking phenomena may be overcome
are particularly attractive because of the con- by using high-order elements'”*? or resorting to
sistent and general formulation and the com- the reduced or selective integration scheme.*®
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In the development of structural elements
for the post-buckling analysis, the consider-
ation of large rotations introduces additional
difficulties due to the non-vectorial nature of
finite rotations. In the conventional non-linear
formulation of the degenerate beam elements,
#%5) the tangent stiffness matrix is derived by
assuming infinitesimal rotation increments and
the effect of large rotation increments is con-
sidered only during the equilibrium iterations
when calculating the stresses. The kinematics
of large rotation was studied extensively by
Argyris%) and formulations that take into ac-
count the effect of finite rotation increments
on the resulting stiffness have been presented
by Surana,”? Surana and Sorem,” Dvorkin et
al,” Simo,’Y and Simo and Vu Quoc.m How-
ever, these studies have not fully investigated
the stability and post-buckling behaviors with
multiple limit points.

On the other hand, many methods have been
proposed to solve limit-point problems and
there are a number of numerical algorithms

d’33-35)

such as the arc-length metho and the auto-

matic combination algorithm of the load and
displacement incremental method. *®

This study concentrates on the non-linear
formulations of the degenerate beam elements
considering the effect of second order terms of
Rodriguez’s finite rotations. The combined
load / displacement incremental method is
adopted to trace the entire equilibrium path
including multiple limit points. The effects of
second order rotations in evaluating tangent
stiffness matrices are investigated through the
numerical examples focused on the strongly
geometrically non-linear analysis of space

frames using the degenerate beam element.
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2. KINEMATICS OF THE DEGENERATE
BEAM ELEMENT

This study concentrates on the geometrically
non-linear formulation based on the C° curved
beam element with arbitrary rectangular cross
section. The isoparametric curved beam el-
ement is employed to derive the incremental
equilibrium equation governing the large defor-
mation behavior of space frames. The present
element formulation takes into account the ef-
fect of second order terms of Rodriguez’s finite
rotations in the incremental displacement field.

Figure 1 shows the kinematics of a curved
beam element with rectangular cross section.
At each node we define the orthonormal system
oyt oy oyt where V¥ is the tangent vector to
the element axis.

The kinematic hypotheses in this formu-
lation are as follows

1. plane sections originally normal to the
center line axis at the initial state remain
plane during the deformation but not necess-
arily normal to the deformed axis due to shear

deformations, and

At time t

X, '%, U,

FIG. 1 Beam Element Undergoing Large Displacements
and Rotations



9. the cross section of the beam is not de-

formed.

Using the natural coordinate system (r, s, t),
the position vector components (‘X;) of an ar-
bitrary point inside the beam element in the

initial configuration can be expressed as
n n
°Xi =X N °X! 4+ S X0k Vi
k=1 k=1

+ Lz a;,N,, OV?,' (1)
2k=1

where the N,(r) are the isoparametric interp-
olation functions at the nodal point % and their
detailed expressions can be found elsewhere.?) a;
and b, are cross-sectional dimensions of the
beam, and °V% and °V% are direction cosines of

normal vectors at nodal point k, respectively.
Similarly, the position vector at the current

state is given by

X =Y Ni'XE+5X BNV +5 TNV
k=1 k=1 k=1
(2)

Using equations (1) and (2), the total dis-
placement of the same point corresponding to

the configuration at time ¢ is obtained as

Ui ='Xi — °Xi

=Y N,'Ut + 3 0N (VE—VE)
k=1 2 k=1
+ SR aN(VE-VE) (3)
k=1

and, similarly, the incremental displacement is

Uz — t+AtXi . tXi

X9 ™15 199744 33

N MU+ B BNV V)
1 k=1

I
R

+ —%Zaka(HNVfF'VfJ (4)
k=1

Since to go from the configuration at time ¢
to the configuration at time ¢+At the
orthonormal system at node k is only rotated,
the direction cosines at time t¢+At can be
transformed to those at time ¢ using the ro-

tation matrix (T R,

H’Aka - £+Apk tvk (sa)
TV =RV (5b)
H‘Atvf — §+APk IV;Z (50)

Considering the Rodriguez’s finite rotations,
the rotational matrix corresponding to node &

is as follows:

o ph
HMp [, + su{;ko o

1 [ sin(642) 7% a2
+1 [_(_L“L(o*/z) ] (0" (6)
where
6" =[ (6)* + ()" + ()* 1 @)
and
0o -6 08 ]
o= & 0 — 61 (8)
—64 o 0
Argyris® proved that equation (6) can be

rewritten as

(ORH = [+ @ + (@ + 30 -
(9
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In a usual formulation, the incremental
rotations are assumed to be infinitesimal and
only the linear terms of the incremental
rotations are retained. However, because the
incremental rotations are assumed to be finite,
both the linear terms and the quadratic terms
should be included in the incremental displace-
ment equation. Substituting equation (9) into
(5) and neglecting higher order terms than the

second order term, the following equations are

obtained
YR —WVEE -VER 4+ Vi 6 (10a)
L —VE(BH A+ Viet o) + 'V ot o]
YL~ Ve S VR + Vo (10b)
+LL VEotes — VA (a+as?) + Viehof)
HAYE - WES VRO + V6 (10c)

+LT VA6 8+ Vh 03 05+ VE ot +el)

Resultantly, by substituting equation (10)
into (3), the incremental displacement can be

obtained as
U=U +U; (11)

where U; and U; are the conventional linear
term and the extra quadratic term due to the
finite rotations, respectively, and the detailed

expressions are as follows
U=YNU+ %thNk(“'Vf.’ o+ Vi et)
k=1 k=1

+ £ aNu ~ 'V 6 + 'Vh &)
k=1

(12)
and
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Ul=£3 5, ML
2,§1 P2
[ Vi — Vit + 689 + ‘Vieldh ]
+%i & er- (13)
k=1 2

[ 'Vigloh + ‘Vieheh + 'VE(AE + 4D ]

The above equations are the basic express-
ions that are used to establish the strain-
displacement matrices for non-inear analysis
of space frames. In the conventional formulation,
the linear and non-linear strain-displacement
transformation matrices may be obtained by
neglecting the second order rotational terms
from equations (1) to (13). The detailed ex-
pressions of strain and stress vectors, the
stress matrix and the constitutive matrix con-

sidering finite rotations are given in Appendix.

3. INCREMENTAL EQUILIBRIUM
EQUATION CONSIDERING FINITE
ROTATIONS

Virtual work principle for the general con-

tinuum is expressed as,
[ori - 86 %°dv = (R
— j‘s 57+AI7';_ 52+AIUL' Ods (14)
where

te; = LU, + M + UL )
(15)
In these formulae, 5*45; and ‘*%; are the sec-

ond Piola-Kirchhoff stress and the Green-
Lagrange strain at time t+Af referred to the



configuration at time o, respectively: A SFT
the total displacement vector: AT is the sur-

face force.
For an incremental analysis, incremental

equations of stresses, strains and surface forces

are
LG — 585 = oSy (16)
P — b = by (17)
Ham ‘m=T (18)

where the superscripts o, ¢ and ¢t+At represent
the initial, current and deformed variables. The
incremental variables have no superscripts.
The incremental displacement components at

time ¢ and ¢+ At are
t+NU,'=tU,'+U,’+ U: (19)

where U; denotes the first order terms of the
displacement parameters and U; denotes the
second order terms due to large rotations, and
their sum consists of incremental displacement.
Substituting equation (19) into equation (15)
and neglecting higher order terms, the in-

cremental equation of strains is expressed as

*
Z+A%ij - fﬁij = 0€jj + oNij + 0€ij (20)

where

oei} = %( oUiJ + oU],i + wk,i onJ + ﬂUk.i f)l‘]k./)
(21a)

oM = —%.DUk,i onJ Li k=12, 3 (21b)

o = (UL + Ui+ W Uiy + Uke W)
(21c)

H9H 15 199711 33

The .; and .n; are the conventional linear
and non-linear Green-Lagrange strain in-
crement respectively, and ,,e:,- is the linear
strain increment due to U’

Substituting equation (20) into equation
(14), neglecting the higher order terms and
considering equation (16), the incremental
equations of equilibrium® for a general con-
tinuum in the total Lagrangian formulation is

expressed as
jV (acljn o€rs 6aexj + f}sijéorhj + f’slj(soe:j)udv

=""4R — jvégjaoeijodv (22)

where Cj, are the incremental constitutive
tensors at time ¢ referred to the configuration
at time o. In this formula, the first term gives
the element elastic stiffness and the last term
the element nodal force, whereas the geometric
stiffness results from the contribution of
non-linear strains, i.e. the second and third
terms.

Since each term of equation (22) is scalar,
equation (22) can be rewritten in the local co-

ordinate system as follows:

jv(ocaﬁy& oeyééoezﬁ + ldsaﬂéoﬂuﬂ + ZSapéae:g)"dV

= t+AlR _ jviisaﬁéoeaﬁadv (23)

where

oea:ﬂ = '%_ (an,ﬁ +0Up,a +wy,a ko,ﬁ +0Uyy, f,UM;)

(24a)
oMNap = % OU'/.a ko,ﬁ o By=rst (24b)
= 5 Wap +Uha U, Vg +U7a )

(24¢)
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In this formulae, the greek subscripts mean
the variables in the local coordinate system.
Applying the second order tensor transform-
ation between the global and local coordinate
systems, each strain components of equation

(24) can be obtained as follows:

uUa,ﬂ = T}a 7; oUi,j (253)
Wa,ﬁ = T}a Eﬂ ZUU (ZSb)
s =Tu Tp U, (25¢)

In matrix notation, equations (23) can be

rewritten as

[ (EE € 8.Er + RS .Eny +4S 8,EN,)'aV

e J | ST.EL AV (26)

where E;, and ,En, are the linear and the
non-linear incremental strain vectors, respect-
ively, and OE,‘VL is the linear strain increment
vector due to U, 'S the stress matrices: ‘S the
stress vectors: ,C represents the incremental
constitutive matrix. The detailed expressions
can be found in Appendix.

From the strain-displacement relationship,
the nondinear strain vector LEnx, can be

expressed as follows,
‘Eny = By U, (27)

where By, and U, is the non-linear strain-
displacement transformation matrix and the
nodal displacement vector, respectively.

The linear strain vector LE; is expressed in
terms of the linear strain-displacement matrix

!B which consists of B, and ,By; reflecting the
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effect of initial displacements.
WEL =B U. = (;BL, + :Bu)U. (28)

Considering equation (24) and (27), By is

expressed as the product of ;By; and ,L
8B = oL - B (29)

where LL is the gradient matrix of total
displacements and the detailed expression can
be found in Appendix.

Recently, some researchers found that for
exact evaluation of the tangent stiffness
matrices, the second order terms with respect
to the rotational degree of freedom should be
added to the non-linear strain terms of the in-
cremental equations. These additional terms in

the total Lagrangian (T.L.) formulation are
[ 0p°aV = [ 157 BlapU av (30)

where QB;\/L is the strain-displacement trans-

formation matrix due to U;.

Substituting element coordinates and dis-
placement interpolation into equations (27),
(28), (29) and (30), the governing finite el-
ement equation for a single element in the T.L.

formulation can be expressed as

(K, + Ky )AU = “*%R — 'F (31)
where

Ky = j ,oBL € B dV (32a)

Ky = [ JoBRLIS (B AV + (K (32b)

oF = [4BLiS cav (32¢)



In equations (31) and (32), (K and Ky are
the linear and the non-linear stiffness matrices,
respectively and f,KFVL is the geometric stiffness
matrices due to second order rotation terms.
AU the increment of the nodal displacement
vector ; 'F the nodal force vectors equivalent to
the element stresses at time t. The scheme
calculating the nodal force vector oF is
summarized as follows:

1) The incremental displacement due to the
incremental or unbalanced load and the total
displacement are computed from equation (31).

2) In the global coordinate, Green-Lagrange
strain components corresponding to the total
displacement are evaluated at each Gaussian
point from equation (15).

3) Using the transformation rule between
the global and local coordinate system, Green-
Lagrange strain components are evaluated as

follows

57+Neaﬁ =Th 'I;B £+N5ij (33)
4) In the local coordinate, the second Piola-
Kirchihoff stress components are calculated as

£+Nsaﬂ = :>+Ncaﬂy& Z+N8.,5 (34)

5) Internal nodal forces ‘**F is evaluated at

each Gaussian point from equation (32c).
4. NUMERICAL EXAMPLES

In order to demonstrate the validity of the
present study, the finite element program
named NOBA was developed, which can trace
the post-buckling behaviors of space frames,

using the automatic load/displacement in-

HH oM 15 19974 3H

cremental algorithm.*®

To investigate the effects of finite rotations
in the geometrically non-linear analysis of the
space frames with the degenerate beam
elements, the proposed formulation including
the effects of finite rotations (the 2nd order
formulation) is compared with the formulation
assuming infinitesimal rotation increments
(the 1st order formulation) through the nu-
merical examples. In the subsequent examples,
the 3-node beam elements are used and the geo-
metric and physical properties of each problem

are described in the corresponding Figures.

4.1 CANTILEVER UNDER AN END MOMENT

This example is one of the typical non-linear
beam problems which can be solved by an ana-
lytical method. Figure 2 shows a straight
cantilever beam loaded with a moment (M=fm)
at the free end. Here, f is the load incremental
factor, m is the reference moment, and f; is the
shear correction factor. The cantilever is
modeled and analyzed by four beam elements.
The total moment M=2.0m is applied in ten

equal increments.

E =100, v=00,/,=12
b=12, A=10, L=100
M=fm, m=nEI|L=3141593

FIG. 2 Cantilever under an End Moment
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Table 1 shows the load parameter, normalized
vertical displacements at the end of the cantil-
ever, and the number of equilibrium iterations in
each load step. The results of this study are
compared with the analytical solution (see
equation (35)) in Table 1. Converged results of
both the Ist and 2nd order formulations agree
well with the analytic solutions. Table 1 shows
that the equilibrium iteration numbers of the 2nd
order formulation keeps nearly constant in each
load step, but those of the lst order formulation
increases explosively according to the increase of

the end moment.

Table 1 Load-Displacement Behavior of the Cantilever
Beam under an End Moment

Load Analytical This Study

Factor Solution 1st Order 2nd Order
f (Iter.) (Iter.)
0.2 3.042 3.036 (8) 3.039 (8)
0.4 5.497 5.495 (12) 5.498 (8)
0.6 6.945 6.942 (17) 6.945 (8)
0.8 7.198 7.200 (23) 7.202 (6)
1.0 6.366 6.375 (32) 6.388 (6)
1.2 4.790 4.809 (35) 4.824 (6)
14 2.976 2.970 (42) 2.982 (6)
1.6 1.375 1.344 (50) 1.353 (6)
1.8 0.338 0.301 (59) 0.306 (6)
2.0 0.000 0.011 (70) 0.008 (6)

Analytical solution :

V/L=[1—cos(ML/EI)] / (ML/EI) (35)

4.2 HINGED RIGHT-ANGLED FRAME

Figure 3 shows a hinged right-angled frame
subjected to a force (P=fp) at the distance 0.8L
from the left hinge. Here, f and p are the load in-
cremental factor and the reference load, respect-
ively. Each of the wvertical and horizontal

members of the frame is divided into five beam
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m

E=72100v=03,f, =12
b=30, h=20, L=120
% P={p, p=EI/L*= 10000

FIG. 3 Hinged Right-Angled Frame under a Point Load at
x=08L

elements.
Figure 4 and 5 display the analyzed results of
the load parameter versus the horizontal (D;)

and vertical displacements (D,) at the point m.

This example is solved by Cichon® who has de-
veloped a beam element with localglobal DOF
based on a large displacement theory for in-plane
frames. Figure 4 shows that the results of this
study are in good agreement with those of
Cichon.® The results of both the 1st order and
the 2nd order formulation are compared in Figure
5. This shows that the 2nd order formulation can

60

° Dx(Cichon)
A Dy(Cichon)

-—- Dx{Present)
....... Dy(Present)

LOAD FACTOR

-20 - - - .
0 20 40 60 ) 100
DISPLACEMENT

FIG. 4 Load—DiépIacement Curves of the Frame at Point m



60

—— Dx(2nd Order)
- Dy(2nd Order)

o Dx(lst Order)
A Dy({lst Order)

LOAD FACTOR

-20 L 2 " L
0 20 10 60 80 100

DISPLACEMENT

FIG. 5 Comparison of the ist and 2nd Order Formulation
in the Load-Displacement Curve at Point m

trace the entire equilibrium path, but the 1st or-
der formulation breaks down after the first load

limit point.
4.3 CLAMPED-HINGED CIRCULAR ARCH

Figure 6 shows a schematic representation of a
clamped-hinged circular arch subjected to a point
load at the center. The arch is modeled by twenty
four beam elements. This problem of arch insta-
bility after large asymmetric pre-buckling
deflections has been investigated by Da Deppo
and Schmit’” and analyzed by Wood and

P

[ T
-

1

E=1210°v =03,/ = 1.2
b=1.0, A=1.0, R=100, §=215°
P=fp, p=EI/R* = 100.0

FIG. 6 Clamped-Hinged Circular Arch under a Center Load

915 19974 3%

Zienkiewicz'” and Kouhia and Mikkola,?’
The limit loads obtained by this study are

compared with those of above researchers in
Table 2. This shows that the results of this
study agree well with the analytic solution

10 Figure 7

obtained by Da Deppo and Schmit.
displays the analyzed results of the load par-

ameter versus the vertical (D,) and the hori-

~
W

, " Dy(2nd order)
0 o Dy(lst order)

LOAD FACTOR

0 30 100 130 200 2
DISPLACEMENT

[
1=

(a) The Load-Vertical Displacement Curve at the Center

= Dx(2nd order)
04+ o Dx(1st order)

LOAD FACTOR

-0 0 20 40 60 30
DISPLACEMENT

(b) The Load-Horizontal Displacement Curve at the Center

FIG. 7 Comparison of the 1st and 2nd Order Formulation in the
Load-Displacement Curves at the Center
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zontal (D,) displacements at the center using
the 1st order and the 2nd order formulation. It
is found that the lst order formulation breaks
down after the first load limit point, but the
2nd order formulation can trace all equilibrium
path with the combined load/displacement
method even if the gradient of the curve is

very stiff as shown in Figure 7.

Table 2 Limit Loads of Clamped-Hinged Arch

Limit load | 1st Limit Load | 2nd Limit Load
Method (EIIR) (ELIR*)
This Study 8.95 0.73
Analytic Solution®® 8.97
Wood and Zienkiewicz*! 9.24
Kouhia and Mikkola®? 9.00 0.76

4.4 HEXAGONAL SPACE FRAME

This problem consists of a three dimensional
frame composed of twelve members, with half of
them laid out as an hexagon, and the other half
making up the diagonals of the hexagon. The load
is applied vertically on the central node. To Re-
move the translational rigid body motions, the
central node is restricted against the lateral dis-
placement. Each member of the frame is modeled

by two degenerate beam elements.

A
VAVARS

0 T E=4398, G=1590, f,=12
It = Iy= 0.0203, A=0.494, J=0.0331

FIG. 8 Hexagonal Space Frame under a Center Load
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The evolution of the deflection of the apex,
while the load is varied, is given in Figure 9. This
represents the typical nonlinear behavior with
two load limit points. This example is solved by
Papadra.kakism who has studied on the appli-
cation of two vector iteration methods in the in-
vestigation of the large deflection behavior of
spatial structures. Figure 9 shows that both
results of the 1st and 2nd order formulations
agree well with those of Papadrakakis.”) From
this example, it can be found that the present for-
mulation considering the second order terms of fi-
nite rotations shows good results whether the ro-

tation is large or not.

200
—- Dz(2nd Order)
« Daz(1st Order)
1504 A Dz(Papadrakakis)
[+
o
IN
Qo
«
= 100}
a
<<
Q
o]
50
0 + 1 L .
0 1 2 3 4 5
DISPLACEMENT

FIG. 9 Load-Vertical Displacement Curves at Apex

5. CONCLUSIONS

A total Lagrangian formulation based on the
degenerate beam elements is presented. The
strongly geometrically nonlinear problems of
slender structures are solved by considering the
effect of second order terms of finite rotations. In

the numerical examples focused on the post-buck-



ling analysis of space frames, the proposed formu-
lation has been compared with the previous
works. The results have been shown to be in good
agreement with previous works. Also, the
proposed formulation has been compared with the
formulations assuming infinitesimal rotation
increments to verify the effects of finite rotations
in the geometrically nonlinear analysis of space
frames. The results shows that the effects of fi-
nite rotations can be found in the problem of the
convergence rate, the trace of entire equilibrium
path and so on. As a result, the following
conclusions are drawn:

1. The initial and deformed configurations of
the space frames and the arches can be modeled
accurately using the proposed curved beam
elements.

2. The post-buckling equilibrium path of the
slender structures with multiple limit points can
be fully traced by the automatic combination
method of load and displacement incrementation
with the proposed curved beam element.

3. The present formulation including the second
order terms of the incremental rotation shows su-
periority in the accuracy of results and extremely
good convergence characteristics when compared
with the formulation including only the first or-
der terms. Therefore, in order to evaluate the
tangent stiffness of degenerate beam elements ac-
curately, the second order rotational terms should
be included in the non-inear strain terms of the
incremental equations, whether the rotation is fi-

nite or not.

APPENDIX

From the beam assumption, the strain vectors

can be expressed as

M9 15 19974 38

oEL = [oer 20rs 28] (40a)
Bl = [Unr Urs Ut Usr Uss Vs

Utr Uts U] (40b)
BNy = [ er 2eers 206n] (40c)

and the gradient matrix of total displacements

oL is,

w0 01 0 0L 0 0
toL =l Iy I 0 ls Iy O Ly 4 O (41 )
0 I by 0 Il Is O Iy Iy

where
ln = wr,s (42)

The stress matrix 'S, the stress vector 'S,
and the constitutive matrix ,C are expressed,

respectively, as follows

S 0 0
S=1 0 ‘S 0 (43)
06 0 S
ST =[S S, 4Sn ] (44)
E 0 0
£ = faG 0 (45)
{ sym. f2G
where
Sr Sn Su 000
‘S =8, 0 0 and03=| 000
S 0 0 000
(46)

91



(1]

[2]

(3]

(4]

(5]

(6]

(7]

(8]

92

REFERENCES

S. Ahmad, B. M. Irons, and O. C. Zienkiew-
icz, 1970: Analysis of thick and thin shell
structures by curved element, International
Journal for Numerical Methods in Engineer-
ing, Vol. 2, pp. 419451.

J. Oliver and E. Onate, 1984: A total Lagran-
gian formulation for the geometrically nonlin-
ear analysis of structures using finite ele-
ments. Part I. Two-dimensional problems:
Shell and plate structures, International
dournal for Numerical Methods in Engineer-
ing, Vol. 20, pp. 2253-2281.

J. Oliver and E. Onate, 1986: A total Lagran-
gian formulation for the geometrically nonlin-
ear analysis of structures using finite ele-
ments. Part II. Arches, frames and axisym-
metric shells, International Journal for Nu-
merical Methods in Engineering, Vol. 23, pp.
253-274.

K. C. Park and G. M. Stanley, 1986: A cur-
ved C shell element based on assumed natu-
ral-coordinate strains, Journal of Applied
Mechanics, ASME, Vol. 53, pp. 278-290.

K. J. Bathe and E. N. Dvorkin, 1985: A four-
node plate bending element based on Mindlin
/ Reissner plate theory and a mixed interp-
olation, International Journal for Numerical
Methods in Engineering, Vol. 21, pp. 367-383.
K. J. Bathe and E. N. Dvorkin, 1986: A for-
mulation of general shell elements - the use
of mixed interpolation of tensorial compone-
nts, International Journal for Numerical
Methods in Engineering, Vol. 22, pp. 692-722.
E. Ramm, 1977: A plate/shell element for
large deflections and rotations, Formulations
and Computational Algorithms in Finite El-
ement Analysis, U.S.-Germany Symposium,
edited by K. J. Bathe, J. T. Oden, and W.
Wiinderlich, MIT Press, Cambridge, MA.

T. J. R. Hughes, R. L. Taylor, and A. Kan-
oknukulchai, 1977: A simple and efficient el-
ement for plate bending, International Jour-

[9]

[10]

[11]

(12]

(13]

(14]

(15]

(16]

[17]

nal for Numerical Methods in Engineering,
Vol. 11, pp. 1529-1543.

T. J. R. Hughes and W. K. Liu, 1981: Nonlin-
ear finite element analysis of shells: Part I.
Three dimensional shells, Computer Methods
in Applied Mechanics and Engineering, Vol.
26, pp. 331-362.

H. Stolarski and T. Belytschko, 1982: Mem-
brane locking and reduced integration for
curved elements, Journal of Applied Mech-
anics, Vol. 49, pp. 172-176.

H. Stolarski and T. Belytschko, 1983: Shear
and membrane locking in the curved C° ele-
ments, Computational Methods in Applied
Mechanics and Engineering, Vol. 41, pp.
279-296.

T. Belytschko, W. K. Liu, J. S. J. Ong and D.
Lam, 1985: Implementation and application
of a 9-node Lagrange shell element with spu-
rious mode control, Computers and Structur-
es, Vol. 20, No. 1-3, pp. 121-128.

A. F. D. Loula, T. J. R. Hughes and L. P.
Franca, 1987: Petrov-Galerkin formulations
of the Timoshenko beam problem, Computer
Methods in Applied Mechanics and Engin-
eering, Vol. 63, pp. 115-132.

A. F. D. Loula, T. J. R. Hughes, L. P. Franca
and I. Miranda, 1987: Mixed Petrov-Gal-
erkin methods for the Timoshenko beam
problem, Computer Methods in Applied Mec-
hanics and Engineering, Vol. 63, pp. 133-154.
A. F. D. Loula, T. J. R. Hughes, L. P. Franca
and I. Miranda, 1987: Stability, convergence
and accuracy of a new finite element method-
s for the circular arch problem, Computer
Methods in Applied Mechanics and Engin-
eering, Vol. 63, pp. 281-303.

T. J. R. Hughes and L. P. Franca, 1988: A
mixed finite element formulation for Reissen-
er- Mindlin plate theory-uniform conver-
gence of all higher-order spaces, Computer
Methods in Applied Mechanics and Engin-
eering, Vol. 67, pp. 223-240.

F. Brezzi, M. O. Bristeau, L. P. Franca, M.
Mallet and G. Roge, 1992: A relationship be-



(18]

(19]

[20]

(21]

(22]

(23]

(24]

tween stabilized finite element methods and
the Galerkin method with bubble functions,
Computer Methods in Applied Mechanics
and Engineering, Vol. 96, pp. 117-129.

O. C. Zienkiewicz and E. Hinton, 1976: Red-
uced integration, function smoothing and
nonconformity in finite element analysis
(with special reference to thick plates), Jour-
nal of the Franklin Institute, Vol. 302, pp.
443461.

E. D. L. Pugh, E. Hinton and O. C. Zienkiew-
icz, 1978: A study of quadrilateral plate ben-
ding elements with reduced integration, In-
ternational Journal for Numerical Methods
in Engineering, Vol. 12, pp. 1059-1079.

T. J. R. Hughes, M. Cohen and M. Haroun,
1978: Reduced and selective integration tec-
hniques in the finite element analysis of
structures, Nuclear Engineering and Design,
Vol. 46, pp. 445-450.

A. K. Noor and C. M. Anderson, 1981: Mixed
models and reduced/selective integration
displacement models for nonlinear shell anal-
ysis, Nonlinear Finite Element Analysis, edit-
ed by T. J. R. Hughes, A. Pifko and A. Jay,
Proceedings of the ASME Winter Annual
Meeting, AMD-Vol. 48.

O. P. Jacquotte and J. T. Oden, 1984: Analy-
sis and treatment of Hourglass instabilities
in underintegrated finite element methods,
Proceedings of the International Conference
on Innovative Methods for Nonlinear Analy-
sis, edited by W. K. Liu, T. Belytschko, and
K. C. Park, 1984, Prineridge Press Inter-
national Ltd., Swansea, Wales, UK.

W. K. Liu, T. Belytschko and J. S. J. Ong,
1984: The use of stabilization matrices in
nonlinear analysis, Proceedings of the Inter-
national Conference on Innovative Methods
for Nonlinear Problems, edited by W. K. Liu,
T. Belytschko, and K. C. Park, 1984, Prinerid-
ge Press International Ltd., Swansea, Wales,
UK.

K. J. Bathe, 1996: Finite Element Procedur-
es in Engineering Analysis, Prentice-Hall.

H 9135 19974 3%

[25]

(26]

[27]

(28]

(29]

[30]

[31]

(32]

[33]

(34]

K. J. Bathe and S. Bolourichi, 1979: Large
displacement analysis of three-dimensional
beam structure, International Journal for
Numerical Methods and Engineering, Vol. 14,
pp. 961-986.

dJ. Argyris, 1982: An excursion into large rot-
ations, Computer Methods in Applied Mech-
anics and Engineering, Vol. 32, pp. 85-155.

K. S. Surana, 1983: Geometrically nonlinear
formulation for the curved shell elements, In-
ternational Journal for Numerical Methods
in Engineering, Vol. 19, pp. 581-615.

K. S. Surana, 1983: Geometrically non-linear
formulation for two dimensional curved
beam elements, Computers & Structures,
Vol. 17, No. 1, pp. 105-114.

K. S. Surana and R. M. Sorem, 1989: Geom-
etrically non-linear formulation for three
dimensional curved beam elements with large
rotations, International Journal for Numeri-
cal Methods in Engineering, Vol. 28, pp.
43-73.

E. N. Dvorkin, E. Onate and J. Oliver, 1988:
On a non-linear formulation for curved Tim-
oshenko beam elements considering large dis-
placement /rotation increments, International
Journal for Numerical Methods in Engineer-
ing, Vol. 26, pp. 1957-1613.

dJ. C. Simo, 1985: A finite strain beam formu-
lation. The three-dimensional dynamic prob-
lem. Part I, Computer Methods in Applied
Mechanics and Engineering, Vol. 32, pp.
55-70.

J. C. Simo and L. Vu Quoc, 1986: A three
dimensional finite strain rod model. Part II:
computational aspects, Computer Methods
in Applied Mechanics and Engineering, Vol.
58, pp. 79-116.

M. A. Crisfield, 1981: A fast incremental/
iterative solution procedure that handles
‘snap-through’, Computers & Structures,
Vol. 13, pp. 55-62.

K. J. Bathe and E. N. Dvorkin, 1983: On the
automatic solution of nonlinear finite el-
ement equations, Computers & Structures,

93



(35]

(36]

(37]

[38]

94

Vol. 17, pp. 871-879.

P. X. Bellini and A. Chulya, 1987: An improv-
ed automatic incremental algorithm for the

efficient solution of nonlinear finite element

equations, Computers & Structures, Vol. 26,

pp. 99-110.

M. Y. Kim and S. P. Chang, 1990: Geometric
non-linear finite element analysis of the spac-
e truss, Journal of Korean Society of Steel
Construction, Vol. 2, pp. 164-174.

M. Y. Kim and S. P. Chang, 1990: Geometric
non-linear analysis of plane frame structures

subjected to conservative and non-conservative
forces, Journal of Korean Society of Civil
Engineers, Vol. 10, pp. 17-26.

M. Y. Kim and S. P. Chang, 1990: Automatic
load and displacement incremental algorithm
for geometric non-linear finite element analy-
sis of the structure subjected to conserva-
tive and non-conservative forces, Journal of
Korean Society of Civil Engineers, Vol. 10,
pp. 164-174.

[39]

[40]

[41]

[42]

[43]

C. Cichon, 1984: Large displacements in-plan-
e analysis of elastic-plastic frames, Comput-
ers & Structures, Vol. 19, No. 5/6, pp.
737-745.

D. A. Da Deppo and R. Schmidt, 1975: In-
stability of clamped-hinged circular arches
subjected to a point load, Transactions of
ASME, pp. 894-896.

R. D. Wood and O. C. Zienkiewicz, 1977:
Geometrically non-linear finite element anal-
ysis of beams, frames, arches and axisymmet-
ric shells, Computers & Structures, Vol. 7,
pp. 725-735.

R. Kouhia and M. Mikkola, 1989: Tracing
the equilibrium path beyond simple critical
points, International Journal for Numerical
Methods Vol. 28, pp.
2923-2941.

M. Papadrakakis, 1981: Post-buckling analy-
sis of spatial structures by vector iteration

in Engineering,

methods, Computers & Structures, Vol. 14,
No. 14, pp. 393402.



