ON SUBREGULAR POINTS FOR SOME CASES OF LIE ALGEBRA

Y.K. KIM, K.H. SO, G.S. SEO, D.Y. PARK, AND S.H. CHOI

The first 3 cowriters: Dept. of Mathematics,
Chonbuk National University, Chonju 561-756, Korea.
The first 2 cowriters: Dept. of Mathematics,
Chonju University Chonju, Chonbuk 560-759, Korea.

Abstract We shall define three kinds of points for algebraic varieties associated to the center 3 of $\mathcal{U}(L)$ which is the universal enveloping algebra of a finite-dimensional modular Lie algebra over an algebraically closed field F of prime characteristic p. We announce here that $sp_4(F)$ with p=2 has a subregular point.

1. Introduction

It goes without saying that classification of simple Lie algebras and their representations is very important, not that it is simply a big problem but that it is closely related to other branches of mathematics, applied mathematics and theoretical physics in particular.

Representation theory of the finite-dimensional Lie algebra L is determined on the whole by the maximal spectrum of the center $3 = 3(\mathcal{U}(L))$ of its universal enveloping algebra $\mathcal{U}(L)$; here we are mainly dealing with an algebraically closed field F of prime characteristic p as far as we are concerned with the ground field of L.

In 1954, Zassenhaus announced that any specialization of \mathfrak{Z} onto an F-algebra A decides a specialization of $\mathcal{U}(L)$ onto a finitely

Received January 9, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 17B50, 17B20.

Key words and phrases: S - representation, modular Lie algebra.

^{*} Supported by the Basic Science Research Institute Program, Ministry of Education, 1996, Project No. BSRI-96-1437.

generated A-ring B, which is uniquely determined up to isomorphisms over A, showing that the classes of equivalent absolutely irreducible representations correspond in 1-1 fashion to the specializations of 3 into F except for a subvariety of 3 characterized by the vanishing of the specialized discriminant ideal of $\mathcal{U}(L)$ over 3 and the degree of those representations equals p^m with $[Q(\mathcal{U}(L)):Q(\mathfrak{Z})]=p^{2m}$.

In addition, he asserted that \mathfrak{Z} is just a normal algebraic variety of the same dimension as $dim_F L$ and $\mathcal{U}(L)$ becomes a maximal order of the division algebra $Q(\mathcal{U}(L)) := (\mathfrak{Z} \setminus \{0\})^{-1}\mathcal{U}(L)$ of dimension p^{2m} over the quotient field $Q(\mathfrak{Z})$ of \mathfrak{Z} [44]. I would like to conjecture here that it becomes smooth for classical Lie algebras with p > 7. Some heuristic information appears in my recent paper [19].

In 1967, Rudakov and Shafarevich showed that there exists a 1-1 correspondence between maximal points and irreducible p-dimensional S-representations (cf. [39]) of $sl_2(F)$ provided that the point P of the manifold $Spec_m(\mathfrak{Z})$ does not equal $(0,0,0,k^2)$ with $k(\neq 0) \in F$; points $P = (0,0,0,k^2)$ with $k \neq 0$ correspond to two kinds of irreducible P-representations of degree k and p-k; (0,0,0,0) is none other than the irreducible P-representation V(p-1) [26]. Of course, $p \neq 2$ in this situation. The standard basis of $sl_2(F)$ is $\{e,f,h\}$ as usual with [f,e] = -h, [f,h] = 2f, [e,h] = -2e,; the elements $x := f^p$, $y := e^p$, $z := h^p - h$, $t := (h+1)^2 + 4fe$ generate $\mathfrak{Z}(\mathcal{U}(sl_2(F)))$ in $\mathcal{U}(sl_2(F))$; then $Spec_m(\mathfrak{Z}(\mathcal{U}(sl_2(F))))$ is defined in F[x,y,z,t] by the algebraic equation $z^2 - \prod_{i=0}^{p-1} (t-i^2) + 4xy = 0$.

Curtis and Steinberg classified P-representations earlier for modular simple Lie algebras leaving their dimension formula problem open. By the way, the algebraic variety $Spec_m(3)$ has three kinds of points corresponding to p^m -dimensional S-representations with $S \neq 0$ and lesser dimensional S-representations with $S \neq 0$ and P- representations respectively [39], which is also attributed to Zassenhaus [44]. In the Lie algebra literature, we could not find names given to these points; so we called them regular points, subregular points and p-points respectively. We

hope, however, to have better names than these.

In 1988, Helmut Strade and R. Farnsteiner investigated spectra for $\mathcal{U}(L)$ very well in their recent book [39], but they did not mention such ingredients as are necessary for modular representation theory.

In this paper, we exhibit some examples showing that there may be subregular points for $L = sp_4(F)$ with p = 2 even though there isn't any such point for $L = sp_4(F)$ with p > 2.

2. Exact definition of 3 kinds of points

Let F be an algebraically closed field of prime characteristic and L a finite dimensional restricted Lie algebra with basis $\{x_i|1\leq i\leq n\}$. Further let $\mathcal{O}(L)$ be the $alg_F\langle\{x_i^p-x_i^{[p]}\}\cup \mathfrak{Z}(L)\rangle$ in $\mathcal{U}(L)$ with $\mathfrak{Z}(L)$ center of L; then $\mathcal{O}(L)$ becomes the Noether normalization of $\mathfrak{Z}(L)$, so that $\exists s_i\in \mathfrak{Z},1\leq i\leq n'$ such that they are integral over $\mathcal{O}(L)$ and $\mathfrak{Z}(L)[s_1,\cdots,s_{n'}]$. Let $h:\mathcal{O}(L)[X_1,\cdots,X_{n'}]\to \mathfrak{Z}(L)$ be the evaluation (algebra) homomorphism sending $X_i\mapsto s_i$ for $1\leq i\leq n'$; then we have $\mathfrak{Z}(\mathcal{U}(L))=\mathcal{O}(L)[s_1,\cdots,s_{n'}]\cong \mathcal{O}(L)[X_1,\cdots,X_{n'}]/Ker$ h which becomes a coordinate ring on a normal algebraic variety V(Ker) of degree n [44]. Hence any maximal ideal of $\mathfrak{Z}(\mathcal{U}(L))=\mathfrak{Z}(L)$ are roots of Ker h for independent variables \mathfrak{Z}_j 's $(1\leq j\leq n)$ corresponding to variables $\mathfrak{Z}_j^p-x_j^{[p]}$.

Now following Zassenhaus, we have a mapping φ which goes from the set of all finite dimensional irreducible L-modules onto $Spec_m(\mathfrak{Z})$ which is the set of maximal ideals of \mathfrak{Z} . Here we may define 3 kinds of points in this spectrum as follows: we call $(0, \dots, 0, \eta_1, \dots, \eta_{n'})$ a P-point since it gives rise to P-representations; the point $(\xi_1, \dots, \xi_n, \eta_1, \dots, \eta_{n'})$ with $dim_F(\mathcal{U}(L)/m_j) = p^{2m}$ gives rise to p^m -dimensional S-representation $(S \neq 0)$, where m_j is a maximal 2-sided ideal containing the ideal

 $\sum_{j=1}^{n} \mathcal{U}(L)(x_{j}^{p} - x_{j}^{[p]} - \xi_{j}) + \sum_{i=1}^{n'} \mathcal{U}(L)(s_{i} - \eta_{i}) \text{ with } \xi_{j}\text{'s and } \eta_{i}\text{'s}$ in F satisfying $Ker\ h$ if they replace $x_{j}^{p} - x_{j}^{[p]}$ and s_{i} 's respectively, so that we call the point $(\xi_{1}, \dots, \xi_{n}, \eta_{1}, \dots, \eta_{n'})$ a regular point

; the rest case gives rise to S-representation $(S \neq 0)$ module of dimension $< p^m$, so that the point is called a *subregular point*.

3.
$$Irr(s, \mathcal{O}(L))$$
 for $L = sp_4(F)$

In the sequel, we shall fix $L = sp_4(F)$ over an algebraically closed field F of characteristic p > 2 unless otherwise specified; we denote by E_{ij} an elementary matrix whose (i,j)—th entry is 1 with all others zero. A standard basis of L then consists of the followings: $h_1 := diag(1,0,-1,0), h_2 := diag(0,1,0,-1), x_1 := E_{13}, x_2 := E_{24}, x_3 := E_{14} + E_{23}, x_4 := E_{12} - E_{43}$ and their transposes.

Recently we have found that $Ker\ h$ becomes a principal ideal related to these elements, i.e., it becomes a hypersurface in the affine space $F^{n+n'+1}$; we now state some important facts without proofs. See [25] for more detail.

PROPOSITION 3.1. Let s be an element in U(L) of the form $s := (h_1+1)^2 + (h_2+1)^2 + 2h_1 + 4({}^tx_1x_1 + {}^tx_2x_2) + 2({}^tx_3x_3 + {}^tx_4x_4);$ then $(i)s \in \mathfrak{Z}$ and $(ii)\mathfrak{Z} = \mathcal{O}(L)[s]$ in U(L).

PROPOSITION 3.2. We denote the irreducible integral equation of s over $\mathcal{O}(L)$ by $Irr(s, \mathcal{O}(L))$; then

(i) $Irr(s, \mathcal{O}(L))$ is obtained by expanding out

$$\begin{split} N_{Q(3)}^{Q(3)(h_1,h_2)} &\{ s - (h_1+1)^2 - (h_2+1)^2 - 2h_1 \} \\ &= N_{Q(3)}^{Q(3)(h_1,h_2)} &\{ 4({}^tx_1x_1 + {}^tx_2x_2) + 2({}^tx_3x_3 + {}^tx_4x_4) \}, \end{split}$$

and its degree is p^2 ,

(ii) s becomes separable over $\mathcal{O}(L)$ and so over $Q(\mathcal{O}(L))$.

4. Examples of subregular points

The following facts have their origins in [12] and [25], expressing probably more about dimensions of irreducible L-modules. See [25] for further detail.

PROPOSITION 4.1. A point $(\xi_1, \dots, \xi_{10}, \eta)$ with ξ_i $(1 \le i \le 10)$ not all zero corresponds in one to one fashion to a p^4 -dimensional irreducible S-representation and $(0, \dots, 0, \eta)$ corresponds to P-representations. In other words, $(\xi_1, \dots, \xi_{10}, \eta)$ with ξ_i not all zero is a regular point, and $(0, \dots, 0, \eta)$ is a P-point.

Now we are prepared to present some examples showing that $sp_4(F)$ with p=2 has some pathological aspect for certain specified points in $Spec_m(3)$, i.e., it has some subregular points in terms of our definitions in §2. As is well-known, $L = sp_4(F)$ with p=2 is not simple; nevertheless it also satisfies propositions (3.1) and (3.2), so that the dimension of irreducible L-modules must be $\leq 2^4$ by virtue of the introduction of this paper. Suppose that for $\bar{L} = sp_4(F)/FI_4$ with p = 2, $\xi_7 \neq 0$ with other ξ_i 's (j = 1) $1, 2, \dots, \hat{7}, \dots, 10$) zero, where $\hat{}$ denotes caret; then any point of the form $(0,0,\cdots,0,\xi_7,0,\cdots,0,\eta)$ which satisfies $Irr(s,\mathcal{O}(L))$ becomes a subregular point. We explain why this is so. first put $\bar{\mathfrak{m}} :=$ the left ideal of $\mathcal{U}(L)$ generated by $\{x_1^p, {}^tx_1^p, h_1^p$ $h_1, x_2^p, t_2^p, h_2^p - h_2, x_3^p - \xi_7, t_2^p, x_4^p, t_2^p, x_4^p, s - \eta\};$ we next put $\rho :=$ the left ideal of $\mathcal{U}(L)$ generated by $\{\bar{\mathfrak{m}}, h_1, h_2, x_1, t_2, t_2\}.$ We then insist that $\mathcal{U}(L)/\rho$ becomes an L-module with 1 < $dim_F \mathcal{U}(L)/\rho < p^4$ induced from an S-representation, i.e., the point $(0, \dots, 0, \xi_7, 0, \dots, 0, \eta)$ becomes a subregular point by virtue of Poincare-Birkhoff-Witt theorem and the fact that $s \equiv 0$ modulo ρ . Of course, there may be similar cases which the above remarks about subregular points apply to.

All in all, we round up the above remarks in the following

PROPOSITION 4.2. Suppose that $\bar{L} = \mathrm{sp}_4(F)/FI_4$ over an algebraically closed field F of characteristic p=2 and that $(0,\cdots,0,\xi_7,0,\cdots,0,\eta)$ with $\xi_7\neq 0$ satisfies $Ker\ h$; then it yields an irreducible \bar{L} -module with its dimension >1 and $< p^4$, i.e., the point becomes a subregular point in terms of our definition.

REMARK. In case of $L = sp_4(F)$ with its center FI_4 , we obtain a similar result as above if we put $\bar{\mathfrak{m}} :=$ the left ideal of $\mathcal{U}(L)$ generated by $\{I_4, x_1^p, {}^tx_1^p, h_1^p - h_1, x_2^p, {}^tx_2^p, h_2^p - h_2, x_3^p - \xi_7, {}^tx_3^p, x_4^p, {}^tx_4^p, s - \eta\}$.

References

- 1. G. Benkart and T. Gregory, Graded Lie algebras with classical reductive null component, Math. Ann. 285 (1989), pp85-98.
- G. Benkart and J.M. Osborn, Lie algebras (Proceedings), Madison, Springer -Verlag, 1987.
- 3. —, Rank one Lie algebras, Annals of Math. 119 (1984), pp437-463.
- 4. —, Simple Lie algebras of characteristic p with dependent roots, Trans. of the AMS Vol.318, No.2 (1990), pp783-807.
- 5. —, Toral rank one Lie algebras, Journal of Algebra 115 (1988), pp238-250.
- 6. R.E. Block, Classification of the restricted simple Lie algebras, J. of Algebra 114 (1988), pp115-259.
- 7. —, Dertermination of the differentiably simple rings with a minimal ideal, Annals of Math. 90 (1969), pp433-459.
- 8. R.E. Block and R.L. Wilson, The simple Lie p-algebras of rank two, Annals of Math. 115 (1982), pp93-168.
- 9. C.W. Curtis, Representations of Lie algebras of classical type with applications to linear groups, Journal of Math and Mechanics Vol.9, No.2 (1960), pp307-326.
- A. Dold and B. Eckmann, Algebra Carbondale 1980, Proceedings, Springer-Verlag, 1981.
- 11. J. Feldvoss and H. Strade, Restricted Lie algebras with bounded cohomology and related classes of algebras, Manuscripta Math. 74 (1992), pp47-67.
- 12. E.M. Friedlander and B.J. Parshall, Modular representation theory of Lie algebras, American J. of Math. 110 (1988), pp1055-1094.
- J.E. Humphreys, Introduction to Lie algebras and Representation theory, Springer- Verlag, 1980.
- 14. N. Jacobson, Lie algebras, Interscience Publishers, 1979.
- 15. —, Restricted Lie algebras of characteristic p, AMS (1940), pp15-25.
- 16. Y. Kim, An example of subregular germs for 4 × 4 symplectic groups, Honam Mathematical Journal Vol.15, No.1 (1993), pp47-53.
- 17. —, On whole regular germs for p-adic $Sp_4(F)$, Journal of the Korean Math. Society Vol.28, No.2 (1991), pp207-213.
- 18. —, Regular germs for p-adic $Sp_4(F)$, Can. J. Math. XLI (1989), pp626-641.
- 19. —, Survey of recent development in Lie algebras and their representation theory (preprint).
- 20. Y. Kim and G. Seo, Witt algebras W(1:1) as sl_2 -modules, Bulletin of the Honam Math. Society (1993), pp9-14.
- Y. Kim, G. Seo and S. Won, Some decomposition of modular sp₄(F)-modules using dimension formula, Bulletin of Korean Math. Soc. Vol.32, No.2 (1995), pp191-200.
- 22. Y. Kim and S. Won, What are Chevalley Groups for $sl_2(F)$ -module $V(m) \otimes_F V(n)$?, Comm. Korean Math. Soc. Vol.7, No.1 (1992), pp61-64.

- 23. W.H. Mills and G.B. Seligman, *Lie algebras of classical type*, Journal of Math. and Mechanics Vol.6 (1957), pp519-548.
- F. Qingyun, Universal Graded Lie algebras, Journal of Algebra 152 (1992), pp439-453.
- 25. J. Repka and Y. Kim, Subregular points for some cases of Lie algebras (preprint).
- A.N. Rudakov and I.R. Shafarevich, Irreducible representations of a simple three dimensional Lie algebra over a field of finite characteristic, Math. Notes Acad. Sci. USSR 2 (1967), pp760-767.
- 27. J.R. Schue, Cartan decompositions for Lie algebras of prime characteristic, Journal of Algebra 11 (1969), pp25-52.
- 28. G.B. Seligman, Some remarks on classical Lie algebras, Journal of Math. and Mechanics Vol.6, No.4 (1957), pp549-558.
- 29. J.P. Serre, Lie algebras and Lie Groups, Benjamin/Cummings, 1965.
- 30. K. So and Y. Kim, Some subregular germs for p-adic $Sp_4(F)$, International Journal of Math. and Math. Sciences (1994), pp37-48.
- 31. H. Strade, New methods for the classification of the simple modular Lie algebras, Math. USSR Sbornik Vol.71, No.1 (1992), pp235-245.
- 32. —, Representations of the (p²-1)-dimensional Lie Algebras of R.E.BLOCK, Canadian Journal of Math. Vol.43(3) (1991), pp580-616.
- 33. —, Lie algebra representations of dimension $< p^2$, Trans. of AMS 319, No.2 (1990), pp689-709.
- 34. —, The classification of the simple modular Lie algebras: I. Determination of the two sections, Annals of Math. 130 (1989), pp643-677.
- 35. —, The classification of the simple modular Lie algebras II. The toral structure, Journal of Algebra Vol.151, No.2 (1992), pp425-475.
- 36. —, The classification of the simple modular Lie algebras: III. Solution of the classical case, Annals of Math. 133 (1991), pp577-604.
- 37. —, The classification of the simple modular Lie algebras: IV. Determining the associated graded algebra, Annals of Math. 138 (1993), pp1-59.
- 38. —, The role of p-envelopes in the theory of modular Lie algebras, Contemporary Mathematics Vol.110 (1990), pp265-287.
- 39. H. Strade and R. Farnsteiner, Modular Lie algebras, Marcel Dekker, 1988.
- 40. B. Weisfeiler, On the structure of the minimal ideal of some graded Lie algebras in characteristic p > 0, Journal of Algebra 53 (1978), pp344-361.
- 41. R.L. Wilson, A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic, Journal of Algebra 40 (1976), pp418-465.
- 42. —, Simple Lie algebras of toral rank one, Trans. of the AMS Vol.236 (1978), pp287-295.
- 43. S. Won, Generalization of $[M_{max}: M_{min}]$ for tensor products, Ph.d dissertation, Chonbug National Univ. (1994).
- 44. H. Zassenhaus, The representations of Lie algebras of prime characteristic, Proceedings of Glasgow Math. Assoc. No. 2 (1954), pp1-36.