SOME PROPERTIES OF CERTAIN CLASSES OF FUNCTIONS WITH BOUNDED RADIUS ROTATIONS

KHALIDA INAYAT NOOR

Mathematics Department, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia.

Abstract Let $R_k(\alpha), 0 \le \alpha < 1, k \ge 2$ denote certain subclasses of analytic functions in the unit disc E with bounded radius rotation. A function f, analytic in E and given by $f(z) = z + \sum_{m=2}^{\infty} a_m z^m$, is said to be in the family $R_k(n,\alpha)n \in N_o = \{0,1,2,...\}$ and \star denotes the Hadamard product. The classes $R_k(n,\alpha)$ are investigated and some properties are given. It is shown that $R_k(n+1,\alpha) \subset R_k(n,\alpha)$ for each n. Some integral operators defined on $R_k(n,\alpha)$ are also studied.

1. Introduction

A number of important classes of univalent functions (e.g. convex, starlike) are related through their derivatives to functions with positive real part. Convex and starlike functions of order α are defined by requiring the related functions to have real part greater than α . We replace functions with real part greater than α by certain weighted difference of such functions and obtain some new classes of functions.

For $0 \le \alpha < 1$, let $P(\alpha)$ be the class of functions p, analytic in the unit disc $E = \{z : |z| < 1\}$ with p(0) = 1, such that Re $p(z) > \alpha$ for $z \in E$. Also $C(\alpha)$ and $S^*(\alpha), 0 \le \alpha < 1$, denote the classes of convex and starlike functions of order α respectively. A

Received June 20, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 30C45.

Key words and phrases: Convolution, starlike, convex, bounded radius rotation, integral operators.

function f, analytic in E and given by

$$(1.1) f(z) = z + \sum_{m=2}^{\infty} a_m z^m$$

is starlike of order α if $\frac{zf'}{f} \in P(\alpha)$ and is convex of order α if $\frac{(zf')'}{f'} \in P(\alpha)$ for $z \in E$.

Let $P_k(\alpha), k \geq 2, 0 \leq \alpha < 1$, be the class of functions h, analytic in E, such that

(1.2)
$$h(z) = \left(\frac{k}{4} + \frac{1}{2}\right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right) p_2(z),$$

where $p_1, p_2 \in P(\alpha)$.

The class $P_k(0) \equiv P_k$ was introduced in [7] by Pinchuk. We note that $h \in P_k(\alpha)$ if and only if there exists $p \in P_k$ such that

$$(1.3) h(z) = (1-\alpha)p(z) + \alpha.$$

DEFINITION 1.1. A function f, analytic in E and given by (1.1), is said to belong to the class $R_k(\alpha)$; $k \geq 2, 0 \leq \alpha < 1$, if and only if $\frac{zf'(z)}{f(z)} \in P_k(\alpha)$.

Clearly $R_2(\alpha) \equiv S^*(\alpha)$ and $R_k(0) \equiv U_k$, the class of functions with bounded radius rotation, see [2].

Similarly an analytic function f, given by (1.1), belongs to $V_k(\alpha)$ for $z \in E$ if and only if $\frac{(zf'(z))'}{f'(z)} \in P_k(\alpha)$. It is obvious that

(1.4)
$$f \in V_k(\alpha)$$
 if and only if $zf' \in R_k(\alpha)$.

It may be noted that $V_2(\alpha) \equiv C(\alpha)$ and $V_k(0) \equiv V_k$, the class of functions with bounded boundary rotation first discussed by Paatero, see [2].

Let f and g be analytic in E with $f(z) = \sum_{m=0}^{\infty} a_m z^m$ and $g(z) = \sum_{m=0}^{\infty} b_m z^m$. Then the convolution (or Hadamard product) of f and g is defined by

$$(1.5) (f \star g)(z) = \sum_{m=0}^{\infty} a_m b_m z^m.$$

For $n \in N_o = \{0, 1, 2, 3, ...\}$, let

$$D^n f = \frac{z}{(1-z)^{n+1}} \star f$$
 so that $D^n f = \frac{z(z^{n-1}f)^{(n)}}{n!}$.

We now define the following.

DEFINITION 1.2. For $n \in N_o, k \geq 2, 0 \leq \alpha < 1$, a function f analytic in E is said to belong to the class $R_k(n,\alpha)$ if and only if $\frac{z(D^n f(z))'}{D^n f(z)} \in P_k(\alpha)$ for $z \in E$.

We note that $R_2(0,\alpha) \equiv S^*(\alpha)$, $R_2(1,\alpha) \equiv C(\alpha)$. Also $R_k(0,\alpha) \equiv R_K(\alpha)$ and $R_k(1,\alpha) \equiv V_k(\alpha)$. For k=2 and $\alpha=0$, we have the classes R(n) which have been studied in [9] and it is known that the functions in R(n) are starlike. It can easily be seen that

$$(1.6) f \in R_k(n,\alpha) if and only if D^n f \in R_k(\alpha).$$

In order to develop some results for $R_k(n, \alpha)$, we shall need the following:

LEMMA 1.1. [8]. Let ϕ be convex and g be starlike in E. Then, for F analytic in E with F(0) = 1, $\frac{\phi \star Fg}{\phi \star g}$ is contained in the convex hull of F(E).

LEMMA 1.2. [8]. Let $u = u_1 + iu_2$ and $v = v_1 + iv_2$ and $\psi(u, v)$ be a complex-valued function satisfying the conditions:

- (i) $\psi(u,v)$ is continuous in a domain $D \subset C^2$,
- (ii) $(1,0) \in D$ and $\psi(1,0) > 0$.
- (iii) Re $\psi(iu_2, v_1) \leq 0$ whenever $(iu_2, v_1) \in D$ and $v_1 \leq -\frac{1}{2}(1 + u_2^2)$.

If $h(z) = 1 + \sum_{m=2}^{\infty} c_m z^m$ is a function, analytic in E such that (h(z), zh'(z))

 $\in D$ and $Re \{\psi(h(z)), zh'(z)\} > 0$ for $z \in E$, then Re h(z) > 0 in E.

2. Main Results

We first prove that all functions in $R_k(n,\alpha)$ are of bounded radius rotation.

THEOREM 2.1. $R_k(n+1,\alpha) \subset R_k(n,\alpha)$ for each $n \in N_o$.

Proof. Let $f \in R_k(n+1,\alpha)$. Then, for $z \in E$, $\frac{z(D^{n+1}f(z))'}{D^{n+1}f(z)} \in P_k(\alpha)$. Set

(2.1)
$$\frac{z\left(D^{n}f(z)\right)'}{D^{n}f(z)} = H(z).$$

H(z) is analytic and H(0) = 1.

From (2.1) and the indentity

(2.2)
$$z \left(D^n f(z) \right)' = (n+1) D^{n+1} f(z) - n D^n f(z),$$

we obtain

$$(2.3) \qquad \frac{z\left(D^{n+1}f(z)\right)'}{D^{n+1}f(z)} = \left\{H(z) + \frac{zH'(z)}{H(z)+n}\right\} \in P_k(\alpha)$$

We want to show that $H \in P_k(\alpha)$.

Let.

$$H(z) = \left(\frac{k}{4} + \frac{1}{2}\right)h_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)h_2(z), \ h_i(0) = 1, i = 1, 2.$$

Now, with $h_i = \frac{zs_i'}{s}$, i = 1, 2, we have

$$H(z) = \frac{z \left(D^{n} f(z)\right)'}{D^{n} f(z)} = \left/ \left(\frac{k}{4} + \frac{1}{2}\right) \frac{z s_{1}'(z)}{s_{1}(z)} - \left(\frac{k}{4} - \frac{1}{2}\right) \frac{z s_{2}'(z)}{s_{2}(z)} \right..$$

This gives us

$$\begin{split} H + \frac{zH'}{H+n} &= \frac{z(D^n f)' \star \phi_n}{D^n f \star \phi_n} = \left(\frac{k}{4} + \frac{1}{2}\right) \frac{zs_1' \star \phi_n}{s_1 \star \phi_n} - \left(\frac{k}{4} - \frac{1}{2}\right) \frac{zs_2' \star \phi_n}{s_2 \star \phi_n} \\ &= \left(\frac{k}{4} + \frac{1}{2}\right) \left(h_1 + \frac{zh_1'}{h_1}\right) - \left(\frac{k}{4} - \frac{1}{2}\right) \left(h_2 + \frac{zh_2'}{h_2}\right), \end{split}$$

where $\phi_n(z) = \frac{n}{n+1} \left(\frac{z}{1-z} \right) + \frac{1}{n+1} \frac{z}{(1-z)^2}$.

From (2.3) it follows that $\left\{h_i + \frac{zh_i'}{h_i + n}\right\} \in P(\alpha)$ for $z \in E, i = 1, 2$, and using Lemma 1.2 it can easily be verified that $h_i \in P(\alpha)$ for i = 1, 2. Hence $H \in P_k(\alpha)$ and consequently $f \in R_k(n, \alpha)$.

For $\alpha = 0, k = 2$, this result is proved in [9]. Also, for n = 0, it follows from Theorem 2.1 that

$$V_{k}(\alpha) \subset R_{k}(\alpha)$$
.

THEOREM 2.2. Let $f \in R_k(n, \alpha)$ and be given by (1.1). Then, for m > 3, $k \ge 2$,

$$a_m = 0(1).n^{\{(1-\alpha)(\frac{k}{2}+1)-(n+1)\}},$$

where 0(1) is a constant depending only on k, α and n. The exponent $\{(1-\alpha)(\frac{k}{2}+1)-(n+1)\}$ is best possible.

Proof.

$$D^{n} f(z) = \frac{z}{(1-z)^{n+1}} \star f(z)$$

$$= \left[z + \sum_{m=2}^{\infty} \frac{(m+n-1)!}{n!(m-1)!} z^{m} \right] \star \left[z + \sum_{m=2}^{\infty} a_{m} z^{m} \right]$$

$$= z + \sum_{m=2}^{\infty} \frac{(m+n-1)!}{n!(m-1)!} a_{m} z^{m}.$$

Now, since $D^n f \in R_k(\alpha)$, we use relation (1.4) together with a coefficient result for the class $V_k(\alpha)$ proved in [5] to have, for $m > 3, k \ge 2$

$$\frac{(m+n-1)!}{n!(m-1)!}|a_m| < \left\{k^2(1-\alpha)^2 + k(1-\alpha)\right\}2^{-2\alpha} \left(\frac{2}{3}m\right)^{(1-\alpha)(\frac{k}{2})-1},$$

and this gives us the required result.

The function $F_o \in R_k(n, \alpha)$ defined by

$$D^{n}F_{o}(z) = \frac{z(1+\delta_{1}z)^{\frac{k}{2}-1)(1-\alpha)}}{(1-\delta_{2}z)^{(\frac{k}{2}+1)(1-\alpha)}}, \quad |\delta_{1}| = |\delta_{2}| = 1$$

shows that the exponent $\{(1-\alpha)(\frac{k}{2}+1)-1-n\}$ is best possible.

THEOREM 2.3. $\bigcap_{n=0}^{\infty} R_k(n,\alpha) = \{id\}$, were id is the identity function.

Proof. Let f(z) = z. Then it follows trivially that $z \in R_k(n, \alpha)$ for $n \in N_o$.

On the contrary, assume that $f \in \bigcap_{n=0}^{\infty} R_k(n,\alpha)$ with f(z) given by (1.1). Then, from Theorem 2.2, we deduce that f(z) = z.

For a function f analytic in E, we define the integral operator I_{β} by

(2.4)
$$I_{\beta}(f) = \frac{(\beta+1)}{z^{\beta}} \int_{0}^{z} t^{\beta-1} f(t) dt, \quad (\beta > -1).$$

The operator I_{β} , when $\beta \in N = \{1, 2, 3, ...\}$ was introduced by Bernardi [1]. In particular, the operator I_1 was studied earlier by Libera [3] and Livingston [4].

We now prove the following.

THEOREM 2.4. Let $f \in R_k(n,0)$ and let $I_{\beta}(f)$ be defined by (2.4). Then, for $z \in E$, $I_{\beta}(f) \in R_k(n,\alpha)$, where $0 < \alpha < 1$ and

(2.5)
$$\alpha = \frac{1}{4} \left\{ -(2\beta + 1) + \sqrt{4\beta^2 + 4\beta + 9} \right\}.$$

Proof. Let

$$\frac{z(D^nI_{\beta}(f))'}{D^n(I_{\beta}(f))}=H,$$

where H is analytic and H(0) = 1.

Simple computations show that, for $z \in E$,

$$\frac{z\left(D^n(z)\right)'}{D^nf(z)} = \left\{H(z) + \frac{zH'(z)}{H(z) + \beta}\right\} \in P_k.$$

Now following the same procedure of Theorem 2.1, we have

$$H(z) + \frac{zH'(z)}{H(z) + \beta} = \left(\frac{k}{4} + \frac{1}{2}\right) \left(h_1(z) + \frac{zh'_1(z)}{h_1(z) + \beta}\right) - \left(\frac{k}{4} - \frac{1}{2}\right) \left(h_2(z) + \frac{zh'_2(z)}{h_2(z) + \beta}\right),$$

where h_i are analytic in E, with $h_i(0) = 1$ and $\left\{h_i(z) + \frac{zh_i'(z)}{h_i(z)+\beta}\right\} \in P$, i = 1, 2 for $z \in E$. We want to show that $h_i \in P(\alpha)$ where α is defined by (2.5). Let $h_i(z) = (1-\alpha)p_i + \alpha$. Then

$$\left\{ (1-\alpha)p_i + \alpha + \frac{(1-\alpha)zp_i'(z)}{(1-\alpha)p_i(z) + \alpha + \beta} \right\} \in P \quad \text{for } z \in E.$$

We form the functional $\psi(u, v)$ by choosing u = p(z), v = zp'(z). Thus

$$\psi(u,v) = (1-\alpha)u + \alpha + \frac{(1-\alpha)v}{(1-\alpha)u + (\alpha+\beta)}.$$

The first two conditions of Lemma 1.2 are clearly satisfied. We verify the condition (iii) as follows.

Re
$$\psi(iu_2, v_1) = \alpha + \frac{(1-\alpha)(\alpha+\beta)v_1}{(\alpha+\beta)^2 + (1-\alpha)^2 u_2^2}$$
.

By putting $v_1 \leq -\frac{1}{2}(1+u_2^2)$, we obtain

$$\operatorname{Re} \psi(iu_{2}, v_{1}) \leq \alpha - \frac{1}{2} \frac{(1 - \alpha)(\alpha + \beta)(1 + u_{2}^{2})}{(\alpha + \beta)^{2} + (1 - \alpha)^{2} u_{2}^{2}}$$

$$= \frac{2\alpha(\alpha + \beta)^{2} + 2\alpha(1 - \alpha)^{2} u_{2}^{2} - (1 - \alpha)(\alpha + \beta) - (1 - \alpha)(\alpha + \beta) u_{2}^{2}}{2[(\alpha + \beta)^{2} + (1 - \alpha)^{2} u_{2}^{2}]}$$

$$= \frac{A + Bu_{2}^{2}}{2C},$$

where

$$A = 2\alpha(\alpha + \beta)^{2} - (1 - \alpha)(\alpha + \beta) = (\alpha + \beta)[2\alpha(\alpha + \beta) - (1 - \alpha)],$$

$$B = 2\alpha(1 - \alpha)^{2} - (1 - \alpha)(\alpha + \beta) = (1 - \alpha)[2\alpha(1 - \alpha) - (\alpha + \beta)],$$

$$C = (\alpha + \beta)^{2} + (1 - \alpha)^{2}u_{2}^{2} > 0.$$

We notice that Re $\psi(iu_2, v_1) \leq 0$ if and only if $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain α as defined by (2.5) and $B \leq 0$ gives us $0 < \alpha < 1$. This proves that $h_i \in P(\alpha)$, i = 1, 2 and hence $H \in P_k(\alpha)$.

As a special case, we note that, for $f \in R_k(n,0), I_1(f) \in R_k\left(n,\frac{-3+\sqrt{17}}{4}\right)$.

If we put $\beta = n$ in (2.4), we have the following.

THEOREM 2.5. Let $f \in R_k(n,\alpha)$. Then $I_n(f) \in R_k(n+1,\alpha)$ where $I_n(f)$ is defined by (2.4) with $\beta = n$.

The proof is straightforward when we note from (2.2) and (2.4) that

$$D^n f(z) = D^{n+1} I_n(f).$$

Next we consider the converse of the problem involving the operator (2.4).

THEOREM 2.6. Let $I_{\beta}(f)$, defined by (2.4), belong to $R_k(n, \alpha)$. Then $f \in R_k(n, \alpha)$ for $|z| < r_{\beta}$, where

(2.6)
$$r_{\beta} = (1+\beta)/\left[2+\sqrt{\beta^2+3}\right].$$

This result is best possible.

Proof. Proceeding as in Theorem 2.2, we have

$$\frac{z(D^n f(z))'}{D^n f(z)} = H(z) + \frac{zH'(z)}{H(z) + \beta},$$

where

$$H(z) = \frac{z(D^n I_{\beta}(f))'}{D^n I_{\beta}(f)} \in P_{k}(\alpha) \quad \text{for} \quad z \in E.$$

Define

$$\phi_{\beta}(z) = \sum_{j=1}^{\infty} \frac{\beta + j}{\beta + 1} z^{j} = \frac{\beta}{\beta + 1} \frac{z}{(1 - z)} + \frac{1}{1 + \beta} \frac{z}{(1 - z)^{2}}.$$

Then it can easily be verified that ϕ_{β} is convex for $|z| < r_{\beta}$ where the exact value of r_{β} is given by (2.6).

Since $H \in P_k(\alpha)$, we can write

$$H(z) = \left(\frac{k}{4} + \frac{1}{2}\right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right) p_2(z), \quad p_1, p_2 \in P(\alpha)$$

$$= \left(\frac{k}{4} + \frac{1}{2}\right) \frac{zs_1'(z)}{s_1(z)} - \left(\frac{k}{4} - \frac{1}{2}\right) \frac{zs_2'(z)}{s_2(z)}, \quad s_1, s_2 \in S^*(\alpha)$$

Now

$$\begin{split} \frac{z(D^nf)'}{D^nf} &= H + \frac{zH'}{H+\beta} = \left(\frac{k}{4} + \frac{1}{2}\right) \frac{zs_1' \star \phi_\beta}{s_1 \star \phi_\beta} - \left(\frac{k}{4} - \frac{1}{2}\right) \frac{zs_2' \star \phi_\beta}{s_2 \star \phi_\beta} \\ &= \left(\frac{k}{4} + \frac{1}{2}\right) \frac{\phi_\beta \star F_1 s_1}{\phi_\beta \star s_1} - \left(\frac{k}{4} - \frac{1}{2}\right) \frac{\phi_\beta \star F_2 s_2}{\phi_\beta \star s_2}. \end{split}$$

Since $s_i \in S^*(\alpha) \subset S^*$, $F_i = \frac{zs_i'}{s_i} \in P(\alpha)$, i = 1, 2 and for the exact radius r_{β} , ϕ_{β} is convex in $|z| < r_{\beta}$, we conclude, by using Lemma 1.1, that $\frac{\phi_{\beta} \star F_i s_i}{\phi_{\beta} \star s_i} \in P(\alpha)$ for $|z| < r_{\beta}$. Hence $f \in R_k(n, \alpha)$ for $|z| < r_{\beta}$ where r_{β} is given by (2.6).

The case $\beta = 1$ gives us the Livingston's operator [4] for the class $R_k(n, \alpha)$.

References

- S. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
- A.W. Goodman, Univalent Functions, Polygonal Publishing House, Washington, N.J., 1983.
- 3. R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 735-758.
- 4. A.E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352-357.
- K.I. Noor, On subclasses of close-to-convex functions of higher order, Internat. J. Math. & Math. Sci. 15 (1992), 279-290.
- S. Miller, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. 81 (1975), 79–81.
- 7. B. Pinchuk, Functions with bounded boundary rotation, I.J. Math. 10 (1971), 7-16.
- S. Ruscheweyh and T. Shiel-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135.
- 9. R. Singh and S. Singh, Integrals of certain univalent functions, Proc. Amer. Math. Soc. 77 (1979), 336-340.