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Abstract Let Ri(a),0 € o < 1,k > 2 denote certain subclasses of ana-
lytic functions in the unit disc £ with bounded radius rotation. A function f,
analytic in E and given by f(z) = z+4+ 3 v_, am2™, is said to be in the fam-
ily Rip(n,o)n € No, = {0,1,2,...} and % denotes the Hadamard product. The
classes Ry (n,e) are investigated and some properties are given. It is shown
that Re(n + 1,a) C Ri(n, a) for each n. Some integral operators defined on
Ry (n,a) are also studied.

1. Introduction

A number of important classes of univalent functions (e.g. con-
vex, starlike) are related through their derivatives to functions
with positive real part. Convex and starlike functions of order «
are defined by requiring the related functions to have real part
greater than «. We replace functions with real part greater than
a by certain weighted difference of such functions and obtain some
new classes of functions.

For 0 < a < 1, let P(«) be the class of functions p, analytic
in the unit disc £ = {z : |z| < 1} with p(0) = 1, such that Re
p(z) > a for z € E. Also C(a) and S*(a),0 < a < 1, denote the
classes of convex and starlike functions of order « respectively. A
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function f, analytic in E and given by
e o]
(1.1) f(z) =2+ Z amz™
m=2

is starlike of order « if i}f-' € P(a) and is convex of order « if

(—"%—)i € P(a) for z € E.
Let Py(a),k > 2,0 < a < 1, be the class of functions h, analytic
in F, such that

02 o= (5+5)ne- (5 -1)me.

where p1,p2 € P(a).
The class Pi(0) = P, was introduced in [7] by Pinchuk. We
note that h € Py(a) if and only if there exists p € Py such that

(1.3) h(z) = (1 — a)p(z) + a.

DEFINITION 1.1. A function f, analytic in E and given by
(1.1), is said to belong to the class Rx(a);k > 2,0 < a < 1, if and
only if L&) € Py(a).

Clearly Ry(a) = S*(a) and Ry (0) = Uy, the class of functions
with bounded radius rotation, see [2].
Similarly an analytic function f, given by (1.1), belongs to

Vi(a) for z € E if and only if Qfl;g%ﬁ € Px(a). It is obvious that
(1.4) f € Vi(a) ifand only if zf' € Ry(a).

It may be noted that Va(a) = C(e) and Vi(0) = V4, the class
of functions with bounded boundary rotation first discussed by
Paatero, see [2].

Let f and g be analytic in £ with f(2) = > °_ a,2™ and
g(z) = X _bmz™. Then the convolution (or Hadamard prod-
uct) of f and g is defined by

oo

(1.5) (f*g)(z) = Z A by 2™

m=0
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For n € N, = {0,1,2,3,...}, let

A1)

n!

¥
an:m*f so that an:—"

We now define the following.

DEFINITION 1.2. For n € Ny, k 2 2,0 < a < 1, a function f
analytic in E is said to belong to the class Rg(n, ) if and only

if ﬂg;—ff%)ll € Py(a) for z € E.

We note that Rz(0, ) = S* (), R2(1, @) = C(a). Also Ri(0, a)
= Rk (a) and Ri(1l,a) = Vi(a). For k = 2 and o = 0, we have
the classes R(n) which have been studied in [9] and it is known
that the functions in R(n) are starlike. It can easily be seen that

(1.6) f € Rg(n,a) ifand only if D"f € Ri(w).

In order to develop some results for Ri(n, a), we shall need the
following:

LEMMA 1.1. [8]. Let ¢ be convex and g be starlike in E. Then,
for F analytic in E with F(0) = 1, %‘F—;ﬂ is contained in the convex
hull of F(E).

LEMMA 1.2. [8]. Let u = uy +tup and v = vy + vy and ¥(u,v)
be a complex-valued function satisfying the conditions:
(i) (u,v) is continuous in a domain D C C?,
(ii) (1,0) € D and ¢(1,0) > 0.
(iii) Re vy (iuz,v1) < 0 whenever (iuz,vi) € D and v; < -—%(1 +
Ifh(z) =1+ 3 0 o cmz™ is a function, analytic in E such that
(h(z), 2H(2))
€ D and Re {¢(h(2)),2zh'(2))} > 0 for z € E, then Re h(z) > 0
in E.

2. Main Results

We first prove that all functions in Ri(n,«a) are of bounded
radius rotation.
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THEOREM 2.1. Ri(n+ 1,c) C Ri(n,a) for each n € N,.

Proof. Let f € Rg(n + 1,a). Then, for z € E, zg::“}’(j) "€
Pk(a).

Set

z(D"f(2)) _

(2.1) Dofn) - H(z).
H(z) is analytic and H(0) = 1.

From (2.1) and the indentity
(2.2) 2(D"f(2))' = (n+ 1)D"* f(z) — nD" f(2),
we obtain

z (D""“f(z))' B zH'(2)

(2.3) D f(z) = {H(Z) + m} € Py(a)

We want to show that H € Py(a).

Let
H(z) = (g + %) ha(2) - (Z‘ _ -;-) ha(2), hi(0) =1, = 1,2.

i
Now, with h; = % ,i = 1,2, we have

_ z(D"f(z)) _ ko 1\ z5i(2) k1Y 2s5(2)
ne = 2505 =/ ) ae - (G0) S

This gives us

H+ zH’ :z(D"f)’*¢n=(E+1) 18’1*%_.({9__1) zsz’*cbn
H+n D" f x ¢, 4 2] s1%¢n 4 2/ saxop

(k1 s\ (k1 zh’z)
“(4+2)(h‘+h1) (4 2)("”@ ’
where ¢,(2) = iy (T‘i"z") + n-_lﬁ———-—y(lfz) .

From (2.3) it follows that {hi + ;f%_i;} € Pla)forz e E,i=1,2,

and using Lemma 1.2 it can easily be verified that h; € P(a) for
t = 1,2. Hence H € Pr(a) and consequently f € Rg(n,a).

For a = 0, k = 2, this result is proved in [9]. Also, for n =0, it
follows from Theorem 2.1 that

Vk (C!) - Rk(a).




Some Properties of Certain Classes of Functions 101

THEOREM 2.2. Let f € Ri(n,a) and be given by (1.1). Then,
form >3,k > 2,

0(1).n{(1““)(%+1)~(ﬂ+1)}’

Ay =

where 0(1) is a constant depending only on k, a and n. The
exponent {(1 - a) (¥ + 1) — (n+ 1)} is best possible.

Proof.

z

z—‘j")*,;:f*f(z)

m+n—1'
::z+z _1)’)7;}*

D"f(2) =

oC
z+ Z amsz

m=2 m=2
m+n»1)’
"Z+Z e am2™.
m=2

Now, since D" f € Ry(a), we use relation (1.4) together with
a coefficient result for the class Vi(a) proved in [5] to have, for
m>3,k>2

(m+n—1)! w2 \TONE)2
m‘ ml<{k21—a)2+k(l~a)}2 2 (gm) ,

and this gives us the required result.
The function F, € Ri(n, «) defined by

2(1+ 6,2) 5~ D0~a)
(1- 522)(%+1)(1—a) ’

D"Fo(z) = |81] = |62 = 1
shows that the exponent {(1 — a)(% +1) — 1 —n} is best possible.

THEOREM 2.3. (o, Ri(n, @) = {id}, were id is the identity
function.

Proof. Let f(z) = z. Then it follows trivially that z € Rg(n, a)
for n € N,.
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On the contrary, assume that f € (o_, Ri(n,a) with f(z)
given by (1.1). Then, from Theorem 2.2, we deduce that f(z) = z.

For a function f analytic in £, we define the integral operator
Ig by

ey nn=250 [egen 6> -,

The operator Ig, when 8 € N = {1,2,3, ...} was introduced by
Bernardi [1]. In particular, the operator I; was studied earlier by
Libera [3] and Livingston [4].

We now prove the following.

THEOREM 2.4. Let f € Ri(n,0) and let Ig(f) be defined by
(2.4). Then, for z € E, Ig(f) € Ri(n,«), where 0 < a < 1 and

(2.5) a=%{——(26+1)+ 4ﬁ2+4/3+9}.

Proof. Let
AD (1)) _
D (Is(f)) ’
where H is analytic and H(0) = 1.
Simple computations show that, for z € F,

2(D2)) 2H'(2)
D) {H(”) THE +ﬁ} < B

Now following the same procedure of Theorem 2.1, we have

zH'(z) (k1 zh{(z)
HEO Y my+ 5= (Z * 5) (’“(Z) e w)

ko1 zh, (2)
- (Z - 5) (h'z(z) T o) +ﬂ> ’
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where h; are analytic in E, with h;(0) = 1 and {hi(z) + f—%—g—%} €
Pyi=1,2for z€ E. We want to show that h; € P(a) where a is
defined by (2.5). Let h;(z) = (1 — a)p; + a. Then

‘ (1 - a)zpi(2)
{(1~G)Pz+a+ (1~cx)pi(z)+a+ﬂ} eEP for z€ E.

We form the functional ¢(u,v) by choosing v = p(z),v =
zp'(z). Thus

(1-a)

(1-a)u+(a+8)

The first two conditions of Lemma 1.2 are clearly satisfied. We
verify the condition (iii) as follows.

(1 - Q)(OK -+ ﬂ)’!)l
(@+B8)2+ (1 - a)2ui’
By putting v; < —1(1 + u}), we obtain
1(1-a)(a+B8)(1+ud)
2 (a+B)? + (1 — a)?u}

_ 20(a +B)2 + 2a(1 — a)?uZ ~ (1 — a)(a + ) - (1 - a)(a + B)ul
B 2[(a +B)2 + (1 — o) ?uZ]

Y(u,v)=(1-a)u+a+

Re ¢(iug,v1) = o +

Re ¢(iug,v1) < a ~

A+Bu§
=
where
A=2a(a+ )’ - (1 -a)(a+h)=(a+P)lala+p) - (1-a)),
B=2a(l-a)® - (1 -a)a+B)=(1~-a)2e(-a)-(a+p)],
C=(a+p)?+(1-a)ui>o0.

We notice that Re ¥ (iusz,v;) < 0 if and only if A < 0 and
B < 0. From A < 0, we obtain « as defined by (2.5) and B <0
gives us 0 < o < 1. This proves that h; € P(a),i = 1,2 and hence
H € Py(a).

As a special case, we note that, for f € Ri(n,0),11(f) €
Ry (n, *~§i4———~m) .

If we put 8 = n in (2.4), we have the following.
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THEOREM 2.5. Let f € Rg(n,a). Then I,(f) € Rx(n + 1,a)
where I,,(f) is defined by (2.4) with 3 = n.

The proof is straightforward when we note from (2.2) and (2.4)
that
D" f(z) = D™ I,(f).

Next we consider the converse of the problem involving the
operator (2.4).

THEOREM 2.6. Let Ig(f), defined by (2.4), belon-g to R(n,a).
Then f € Rg(n,a) for |z| < rg, where

(2.6) rg = (1+B)/ [2+ \/ﬂ2+3}.

This result is best possible.

Proof. Proceeding as in Theorem 2.2, we have

(D) _ g H()

D f(z) H(z)+ B’
where Dn ,
H(z):—z—(—ﬁ—;ilfgj)—)—ePk(a) for z€ E.
Define
B+ B z 1 z
¢6(2) = ZB-HJ ﬁ+1(1-—z)+1+6(1—z)2'

Then it can easily be verified that ¢g is convex for |z| < rz where
the exact value of rg is given by (2.6).
Since H € Pi(a), we can write

H(z) = (g + ;—) p1(z) - (Z‘ ~ %) p2(2), p1,p2 € P()

3 k } zs’l(z)“ ls___l_ zs5(2) .
- (Z'*”'z) 51(2) (4 2) w0 vReS
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Now
(D™ fY —H+ zH' (lf 4 1) 28] * ¢p (k 1) z8h % g
Dnf h H+p 4 2] s1xgg 4 2/ saxdg
~<E+l) ¢g*F181_(k_1) @5 *x Fasy
“\4 0 2) ¢pxs 4 2] Pgxsy

Since s; € §*(a) C §*,F; = 4 € P(a),i = 1,2 and for the
exact radius 7, ¢g is convex in |z| < rg, we conclude, by using
Lemma 1.1, that % € P(a) for |z| < rg. Hence f € Ri(n, a)
for |z| < rg where rg is given by (2.6).

The case 3 = 1 gives us the Livingston’s operator [4] for the
class Ry (n, a).
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