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SOME PROPERTIES OF THE CLASSES
OF MATRICES IN THE LINEAR
COMPLEMENTARITY PROBLEMS
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Abstract We are concerned with three classes of matrices that are relevant
to the linear complementary problem. We prove that within the class of
Py-matrices, the ¢-matrices are precisely the regular matrices and we show
that the same characterizations hold for an L-matrix as well, and that the
symmetric copositive-plus Q-matrices are precisely those which are strictly
copositive.

1. Introduction

B.C.Eaves, in 1971, showed the relations among matrices in lin-
ear complementary problems. And in a recent paper [1], Aganagic
and Cottle have established a constructive characterization for
such matrices.

DEFINITION 1. A Q-matrix is a real square matrix M for which
the linear complementary problem, (g, M), of finding a vector x
such that

g+Mz>0, >0 and z'(¢+ Mz) =0

has a solution for every vector q. The class of (}-matrices is de-
noted by Q.

Received May 23, 1997.
Key words and phrases : Fy-matrices, Q-matrices, L-matrices, Linear
complementarity problem

157



158 Young-Chen Lee

DEFINITION 2. A Fy-matrix is a real square with nonnegative
principal minors.

R denotes a class of regular matrices M, i.e., the following
system is inconsistent

M,z +t= 0, if z; >0,

M;z+1t2>0, if z; =0,

0£z>0, t>0.

where M; is the i-th row of M.

DEFINITION 3. The class of S-matrices, denoted by S, consists
of those real square matrices M for which there is a vector x > 0
such that Mz > 0. Obiviously, @ C S.

DEFINITION 4. A real square matrix M is said to be semi-
monotone if for every 0 # x > 0, there exists an index k such that
zr > 0 and (Mz), > 0. The class of semi-monotone matrices is
denoted by L1[3]. Po-matrices are certainly semi-monotone [4].

DEFINITION 5. Real square matrices M such that z'Mz > 0
for all z > 0 are called copositive matrices. The class of Lo-
matrices, denoted by L, consists of those real square matrices
M satisfying the condition: for-every 0 # z > 0 with Mz > 0
and z* Mz = 0, there exist nonnegative diagonal matrices D; and
D, such that Doz # 0 and (DiM + M!D;)z = 0. We define
L= L] N Lg

This class L was inroduced by Faves[3] who showed that if M
is an L-matrix, then it is a ¢J-matrix if and only if it is a S-matrix.

DEFINTION 6. A copositive matrix M is called copositive-plus
if M2z = 0 and z > 0 imply (M + M%)z = 0 and strictly
copositive if z!Mx = 0 and z > 0 imply z = 0.

Clearly, copositive-plus and strictly copositive matrices belong
to L.



Some Properties of the Classes of Matrices 159

DEFINITION 7. A flat point of M [2] is a vector z such that
z!Mz =0and (M + M%)z = 0.

2. Prelininaries

We shall say that the real square matrix M belongs to Ry if
and only if the system

M;z=0, if z; >0,
Mz >0, if 2z =0, (1)
0#£22>20
is inconsistant. It is easy to see that Ry is Carcia’s [5] and E*(0)

of matrices for which (0, M) has the unique solution z = 0.
Notice that Ry D R. In general, these two classes are not equal.

ExXAMPLE 2.1. The matrix
-1 -1
L
belongs to Hy but not to R. The following lemma shows that
within P, there is no difference between these two classes.

Py-matrices have a further characterization which we find useful
in this investigation.

LEMMA 2.1. If M € Py N R™*" q'z < 0 and M'cz < 0 for
z > 0 in the linear complementarity problem (q, M), then (¢, M)
is infeasible.

Proof. (¢ + Mz)!z < 0, Vx > 0, hence r*M'z < 0, i.e., q +
Mz 2 0. Therefore (q, M) is infeasible.

LEMMA 2.2. If M € R**" N Py N Ry, then M € R.

Proof. Suppose there exists a solution z, ¢ to the system in Def-
inition 2. If t = 0 then z satisfies Lemma 2.1 which is impossible
since M € Ry. If t > 0, then 2;(Mz); < 0 for all 7 such that
z; > 0, and there is such 7 since 0 # z > 0. This is also impossible
since M € P,. Hence, the system in Definition 2 has no solution
and M € R.
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COROLLARY 2.1. If M € R™** NPyN Ry , then M € Q.

Proof. The hypothesis implies M € R. But R € Q by Kara-
mardian’s theorem [6. Theorem 4.1.].

LEMMA 2.3. If M e R™*"NPyNQ , then M € Ry.

Proof. Suppose the system (1) has a solution z. Let
a={i:% >0} and a={i:% =0}

By assumption oo = ¢. Choose a vector q with ¢, < 0 and ¢5 > 0.
Let Z be a solution to the problem (g, M). We claim that for A > 0
sufficiently small

(2 — A2)i(M(2 — A2)); < 0 if (2 — A%); #0. (2)

Indeed if i € & and (Z — AZ); # 0 then (2 — A2); = —Az < 0.
Hence, by complementarity, we have (¢ + M Z); = 0 which implies
(M(Z — AZ)); 2 Ag; > 0. This proves (2) for ¢ € @. On the other
hand, if ¢ € a, then

(M(z— AZ)); 2 Ag; < 0.

Consequently, if we choose A > 0 which satisfies that Z, — Az, > 0,
then it follows that (2) holds for i € a as well. Nevertheless,
this isimpossible by Lemma 2.1. This contradicton establishes
the lemma.

These Lemma 2.2 and 2.3 bring us directly to the following.

THEOREM 2.1. If M € F;, then the following are equivalent:
(1) M € Ry,

(2) M € R, and

(3) M € Q.

We establish theorem which shows that Lemma 2.2 is valid if
P, is replaced by the larger class L.
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LEMMA 2.4. Let M € LiNRy. Then M € R, thus M € Q.

Proof. Suppose that the system in Definition 1 has a solution
Z for t = 0. We must have t > 0. Hence for z; > 0, we have
M;z < 0. This contradicts the assumption that M € L;. The
contradiction establishes the lemma.

COROLLARY 2.2. Let M € Ry be copositive. Then M € R,
thus M € Q.

LEMMA 2.5. Let M € LyNQ. Then M € Ry.

Proof. Suppose that the systems in Definition 1 has a solution
z for t = 0. We must have z! Mz = 0. By assumption, there exist
nonnegative diagonal matrices Dy and D; such that D7 = 0
and (DyM + M'D,)z = 0. Hence (ztD;)M = —(M%)tD; < 0.
Consequently, if we choose ¢ < 0 with ¢; < 0 for (D3%); # 0, the
problem (g, M) is infeasible. This contradiction establishes the
lemma. Combining Lemma 2.4 and 2.5 we deduce;

3. Main Results

Among the principal results in this paper, we show that the
same characterizations hold for an L-matrix as well, and that the
symmetric copositive-plus @-matrices are precisely those which
are strictly copositive.

THEOREM 3.1. Let M € L. Then the following are equivalent.
(a) M € Q,

(b) M € R,

(c) M € Ry, and

(d) M eS.

THEOREM 3.2. Let M € ) be copositive. Then the only flat
point of M which is also a solution to (O, M) is the zero vector.

Proof. Suppose that £ > 0 is a nonzero flat point of M that is
also a solutions to (O, M). Let

a={i:z; >0} and a={j:z; =0}
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Since Mz > 0 and z*Mz = 0, we must have (Mz), = 0. It is
easy to see that

(z — 6u)' M (z + Ou) = 0*u* Mu.

If ug > 0, the left side of the above equation is nonnegative for
sufficiently small # > 0. Thus u*Mu > 0 provided that ug > 0.
This implies that for all 8,

(x — 6u)’'M(z +0u) >0 if uz > 0. (3)

Choose a vector q such that g, < 0 and g5 > 0. Let z be a solution
to (¢, M). It is then easy to show that if A > 0 is sufficiently
small so that £, — Azq > 0, then (z — A2);(M(z — A2)); < 0
for (x — Az); # 0. Hence it follows that for such a A, we have
(z — Az)!M(z — Az) < 0 which contradicts (3). The contradiction
establishes the theorem.

COROLLARY 3.1. Let M € () be symmetric and copositive.
Then the following implication is valid:

If Mx=0, >0 implies z=0. (4)

Proof. In fact, any vector x > 0 satisfying Mz = 0 is a flat
point of M which is also a solution to (O, M). By theorem 3.2
the only such vector is zero.

REMARK. The implication (4) is weaker than the statement
that (O, M) has a unique solution. Nevertheless, Corollary 3.1
does not follow from Theorem3.1 either

COROLLARY 3.2. Let M € Q be symmetric and copositive-
plus. Then M is strictly copositive.

Proof. Let x > 0 be such that x!Mz = 0. Since M is symmtric
and copositive-plus, it follows that Mz = 0. Hence by Corollary
3.1, we must have z = 0. Consequently, M is strictly copositive.

Combining Theorem 3.1 and Corollary 3.2, we reduce:
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THEOREM 3.3. Let M be copositive-plus. The following are
equivalent:

(a) M e Q,

(b)M € R,

(C) M€ Ry, and

(d) M € S.

If in addition, M is symmetric, then any one of the above is
equivalent to:

(e) M is strictly copositive, and

(f) the implication (4) holds.

REMARK. Corollary 3.2 and Theorem 3.3 also follow directly
from Theorem 3.1.

4. Conclusion

We have presented the characterizations and relations of lin-
ear programming problems, quadratic programming problems and
complemmentarity problem. And also, we have suggested some
properties of the classes of matrices in the complmentarity prob-
lems.

We might also pose the question that Theorem 3.1 without
condition (d) will remain valid if L is replaced by L;. The difficulty
lies in establishing the inclusion M € (L; N @ N Ryp) or providing
a counterexample.
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