A CHARACTERIZATION OF SOME REAL HYPERSURFACES IN A COMPLEX HYPERBOLIC SPACE

Hyang Sook Kim

0. Introduction

We denote by $M_n(c)$ a complete and simply connected complex n-dimensional Kahlerian manifold of constant holomorphic sectional curvature $4c$, which is called a complex space form. Such an $M_n(c)$ is bi-holomorphically isometric to a complex projective space $P_n \mathbb{C}$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $H_n \mathbb{C}$, according as $c > 0$, $c = 0$ or $c < 0$.

In this paper, we consider a real hypersurface M in $M_n(c)$. Typical examples of M in $P_n \mathbb{C}$ are the six model spaces of type A_1, A_2, B, C, D and E, and the ones of M in $H_n \mathbb{C}$ are the four model spaces of type A_0, A_1, A_2 and B (cf. Theorem A in §1), which are all given as orbits under certain Lie subgroups of the group consisting of all isometries of $P_n \mathbb{C}$ or $H_n \mathbb{C}$. Denote by (ϕ, ξ, η, g) the almost contact metric structure of M induced from the almost complex structure of $M_n(c)$, and by A the shape operator of M. The structure vector ξ is said to be principal if $A\xi = \alpha \xi$, where $\alpha = \eta(A\xi)$. Many differential geometers have studied M from various points of view. Berndt [1] and Takagi [14] investigated the homogeneity of M. According to Takagi’s classification theorem and Berndt’s one, the principal curvatures and their multiplicities of a homogeneous real hypersurface in $M_n(c)$ are given. Moreover, it is very interesting to give a characterization of homogeneous real hypersurfaces of $M_n(c)$. Let \mathcal{L}_ξ be the Lie derivative in the direction of ξ. Then Okumura [13] and Montiel-Romero [12] proved the fact in $P_n \mathbb{C}$ and $H_n \mathbb{C}$, respectively that M is locally congruent to one of homogeneous ones of type A if and only if ξ is an infinitesimal isometry, that is, $\mathcal{L}_\xi g = 0$, where type A means type A_1 or A_2 in $P_n \mathbb{C}$ and type A_0, A_1
or A_2 in $H_n\mathbb{C}$. Motivated by these results, Maeda-Udagawa [11] studied the condition \(\mathcal{L}_\xi \phi = 0 \) and Ki-Kim-Lee [3] investigated the condition \(\mathcal{L}_\xi A = 0 \). Recently, Kimura and Maeda [10] completely classified M in $P_n\mathbb{C}$ satisfying $\mathcal{L}_\xi S = 0$, where S denotes the Ricci tensor of M.

The purpose of the present paper is to investigate M of $H_n\mathbb{C}$ which satisfies $\mathcal{L}_\xi S = 0$ under the condition that $A\xi$ is principal.

1. Preliminaries

We begin with recalling the basic properties of real hypersurfaces of a complex space form. Let N be a unit normal vector field on a neighborhood of a point p in M and J the almost complex structure of $M_n(c)$. For a local vector field X on a neighborhood of p, the images of X and N under the transformation J can be represented as

\[JX = \phi X + \eta(X)N, \quad JN = -\xi, \]

where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M, while η and ξ denote a 1-form and a vector field on the neighborhood of p, respectively. Moreover, it is seen that $g(\xi, X) = \eta(X)$, where g denotes the induced Riemannian metric on M. By the properties of the almost complex structure J, the set (ϕ, ξ, η, g) of tensors satisfies

\begin{align*}
\phi^2 &= -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1, \\
(1.1) &
\end{align*}

where I denotes the identity transformation. Accordingly, this set (ϕ, ξ, η, g) defines the almost contact metric structure on M. Furthermore, the covariant derivatives of the structure tensors are given by

\begin{align*}
(\nabla_X \phi)Y &= \eta(Y)AX - g(AX, Y)\xi, \\
(1.2) &
\nabla_X \xi &= \phi AX, \\
(1.3) &
\end{align*}

where ∇ is the Riemannian connection of g. Since the ambient space is of constant holomorphic sectional curvature $4c$, the equations of Gauss and Codazzi are respectively given as follows:

\begin{align*}
R(X, Y)Z &= c\{g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X \\
&- g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z\} \\
(1.4) &
+ g(AY, Z)AX - g(AX, Z)AY
\end{align*}
A characterization of some real hypersurfaces in $H_n \mathbb{C}$

\[(\nabla_X A)Y - (\nabla_Y A)X \]
\[= c\{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\},\]

where R denotes the Riemannian curvature tensor of M. The Ricci tensor S' of M is the tensor of type $(0,2)$ given by $S'(X,Y) = \text{tr}\{Z \to R(Z,X)Y\}$. But it may be also regarded as a tensor of type $(1,1)$ and denoted by $S : TM \to TM$; it satisfies $S'(X,Y) = g(SX,Y)$. From the Gauss equation and (1.1), the Ricci tensor S is given by

\[S = c\{(2n+1)I - 3h \otimes \xi\} + hA - A^2,\]

where h is the trace of A. Moreover, using (1.3), we get

\[(\nabla_X S)Y = -3c\{g(\phi AX,Y)\xi + \eta(Y)\phi AX\} + (Xh)AY \]
\[+ (Xh)AY + (hI - A)(\nabla_X A)Y - (\nabla_X A)AY. \]

Now we quote the following in order to prove our results.

Theorem A [1]. Let M be a real hypersurface of $H_n \mathbb{C}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:

- A_0. a horosphere in $H_n \mathbb{C}$,
- A_1. a geodesic hypersphere $H_0 \mathbb{C}$ or a tube over a hyperplane $H_{n-1} \mathbb{C}$,
- A_2. a tube over a totally geodesic $H_k \mathbb{C}$ $(1 \leq k \leq n - 2)$,
- B. a tube over a totally real hyperbolic space $H_n \mathbb{R}$.

Theorem B [4]. Let M be a real hypersurface of $H_n \mathbb{C}(n \geq 3)$. If ξ is principal and M satisfies $\mathcal{L}_\xi S = 0$, then M is locally congruent to type A.

2. **Real hypersurfaces in $M_n(c)$ satisfying $\mathcal{L}_\xi S = 0$**

We denote by $M_n(c)$ a complex space form with the metric of constant holomorphic sectional curvature $4c$ and M a real hypersurface in $M_n(c), c \neq 0$. In this section, we suppose that the Ricci tensor S
satisfies the condition $\mathcal{L}_\xi S = 0$. The following discussion in the case where $c > 0$ is indebted to Kimura and maeda [10]:

From (1.3), for any $X \in TM$ we have

$$(\mathcal{L}_\xi S)X = [\xi, SX] - S[\xi, X]$$

$$= (\nabla_\xi S)X - \nabla SX\xi + S\nabla X\xi$$

$$= (\nabla_\xi S)X - \phi ASX + S\phi AX.$$

Then we see that "$\mathcal{L}_\xi S = 0$" is equivalent to

$$(2.1) \quad \nabla_\xi S = \phi AS - S\phi A.$$

Since $g((\nabla SX)X, Y) = g((\nabla SX)Y, X)$ for any $X, Y \in TM$, the equation (2.1) shows

$$(2.2) \quad (\phi A - A\phi)S = S(\phi A - A\phi).$$

From (1.6) it follows that

$$(2.3) \quad \phi S - S\phi = h(\phi A - A\phi) - (\phi A^2 - A^2\phi).$$

Here we hope to calculate $||\phi S - S\phi||^2$, which is equivalent to $tr(\phi S - S\phi)^2$ because $\phi S - S\phi$ is symmetric. From (2.3), we get

$$(2.4) \quad tr(\phi S - S\phi)^2 = htr(\phi A - A\phi)(\phi S - S\phi) - tr(\phi A^2 - A^2\phi)(\phi S - S\phi).$$

In general, we get

$$(2.5) \quad tr(\phi A - A\phi)(\phi S - S\phi) = 2tr\phi A\phi S - trA\phi^2 S - tr\phi AS\phi.$$

Taking the trace of (2.2), we find

$$(2.6) \quad tr\phi^2 AS - 2tr\phi S\phi A + tr\phi^2 SA = 0.$$

Combining (2.5) with (2.6), we obtain

$$(2.7) \quad tr(\phi A - A\phi)(\phi S - S\phi) = 0.$$
On the other hand, we find
\[(2.8) \quad tr(\phi A^2 - A^2 \phi)(\phi S - S \phi) = 2tr\phi A^2 \phi S - trA^2 \phi^2 S - tr\phi A^2 S \phi.\]
From (2.2) it follows that
\[
\phi A\{(\phi A - A\phi)S - S(\phi A - A\phi)\} = 0,
\]
which implies
\[(2.9) \quad tr\phi ASA\phi = tr\phi A^2 \phi S.\]
Then combining (2.8) with (2.9) we have
\[(2.10) \quad tr(\phi A^2 - A^2 \phi)(\phi S - S \phi) = 2tr\phi^2 ASA - tr\phi^2 S A^2 - tr\phi^2 A^2 S.\]
Thus substituting (2.7) and (2.10) into (2.4) and using (1.1) and (1.6), we can see that
\[(2.11) \quad tr(\phi S - S \phi)^2 = -\frac{3}{2} c(\beta - \alpha^2),\]
where we have put \(\beta = \eta(A^2 \xi)\) and \(\alpha = \eta(A\xi)\). Taking account of (1.1), we find
\[(2.12) \quad \|\phi A\xi\|^2 = \beta - \alpha^2.\]
Hence from (2.11) and (2.12), we have
\[
tr(\phi S - S \phi)^2 = -\frac{3}{2} c\|\phi A\xi\|^2
\]
or
\[
\|\phi S - S \phi\|^2 + \frac{3}{2} c\|\phi A\xi\|^2 = 0.
\]
Consequently, the condition "\(\mathcal{L}_\xi S = 0\)" implies the fact that \(\phi S = S \phi\) and \(\xi\) is principal in the case where \(c > 0\) and that \(\phi S = S \phi\) if and only if \(\xi\) is principal in the case where \(c < 0\). Here we note that Kimura and Maeda [10] proved a local classification theorem for real hypersurfaces in \(P_n \mathbb{C}\) which satisfy \(\mathcal{L}_\xi S = 0\). Thus because of Theorem B, it is seems to be interested to consider real hypersurfaces in \(H_n \mathbb{C}\) satisfying \(\mathcal{L}_\xi S = 0\) under the weaker condition than one that \(\xi\) is principal.
3. Real hypersurfaces in $H_n C$ satisfying $\mathcal{L}_\xi S = 0$

Let M be a real hypersurface in a complex hyperbolic space $H_n C$ endowed with the Bergmann metric of constant holomorphic sectional curvature -4. In this section, we assume that M satisfies $\mathcal{L}_\xi S = 0$ and $A\xi$ is principal. The second assumption means

$$A^2 \xi = \lambda A\xi,$$

where $\lambda = \eta(A^3 \xi)$. For simplicity we put $U = \nabla_\xi \xi$. Then we have $U = \phi A\xi$, which together with (1.1) implies

$$\phi U = -A\xi + \alpha \xi$$

and so $g(\phi U, \xi) = 0$. Thus we define ϕU by $\phi U = -\mu W$, where W is a unit vector field orthogonal to ξ and μ is a smooth function on M. Namely, we have

$$A\xi = \alpha \xi + \mu W.$$

Here we note that this and $U = \mu \phi W$ give $g(U, W) = 0$. Moreover, it follows from (1.6) and (3.1) that

$$S\xi = -2(n - 1)\xi + (h - \lambda)A\xi,$$

(3.5) \quad $SU = -(2n + 1)U + hAU - A^2 U.$

From (3.1) and (3.3) we find

$$AW = \gamma A\xi,$$

where $\gamma \mu = \lambda - \alpha$. Thus (1.6) combined with (3.1) and (3.6) gives us

$$SW = -(2n + 1)W + \gamma(h - \lambda)A\xi.$$

From (2.2), we find

$$(\phi A - A\phi)S\xi = S(\phi A - A\phi)\xi,$$

which, together with (1.1), (3.4), (3.5) and the definition of U, yields
A characterization of some real hypersurfaces in $H_n \mathbb{C}$

(3.8) \[A^2 U = (2h - \lambda)AU + (\lambda^2 - \lambda h - 3)U. \]

Also, from (2.2) we get
\[(\phi A - A\phi)SW = S(\phi A - A\phi)W, \]
which, together with (1.1), (1.6), (3.5) \sim (3.8) and the definition of W, leads to

(3.9) \[\{2(\lambda - h)^2 - 3\}AU = \{\lambda(\lambda - h)^2 + 3(h - 2\lambda + \alpha)\}U. \]

On the other hand, differentiating (3.2) covariantly in the direction of X and making use of (1.1), (1.2) and (1.3), we obtain
\[g(4X, U)\xi - \phi(\nabla_X A)\xi + A\phi AX - d\alpha(X)\xi - \alpha\phi AX. \]

Taking the inner product of this and ξ and using (1.1) and (1.3), we have

(3.10) \[g((\nabla_X A)\xi, \xi) = 2g(AU, X) + d\alpha(X). \]

Moreover, differentiating (3.1) covariantly in the direction of X, we get

(3.11) \[(\nabla_X A)A\xi + A(\nabla_X A)\xi + A^2\phi AX \]
\[= d\lambda(X)A\xi + \lambda(\nabla_X A)\xi + \lambda A\phi AX. \]

If we take the inner product of this and ξ and make use of (3.1), (3.10) and the fact that $g((\nabla_X A)\xi, Y) = g((\nabla_X A)Y, \xi)$ for any $X, Y \in TM$, then we find

(3.12) \[g((\nabla_X A)\xi, A\xi) = \frac{1}{2}d(\lambda\alpha)(X) + \lambda g(AU, X). \]

From (3.11), replacing X by ξ and taking the inner product of this result and ξ, we have

(3.13) \[\frac{1}{2}d(\lambda\alpha)(X) + g(U, X) + 3g(A^2U, X) + d\alpha(AX) \]
\[= d\lambda(\xi)g(A\xi, X) + 2\lambda g(AU, X) + \lambda d\alpha(X), \]

where we have used (1.5), (3.10) and (3.12).

Let M_0 be the set of consisting of points x in M such that $(\lambda - h)(x) = 0$. On the subset M_0, from (3.9) it is seen that

(3.14) \[AU = (\lambda - \alpha)U \quad \text{on} \quad M_0. \]

Then, by using (3.14) the equation (3.8) turns out to be $\{\alpha(\lambda - \alpha) - 3\}U = 0$ on M_0.

Lemma 3.1. Let M be a real hypersurface of $H_n\mathbb{C}$. Assume that it satisfies $L_\xi S = 0$ and A_ξ is principal. If $U \neq 0$, then $\text{Int}(M_0) = \emptyset$, where $\text{Int}(M_0)$ denotes the interior of $M_0 = \{x \in M \mid (\lambda - h)(x) = 0\}$.

Proof. We assume that the interior of M_0 is not empty. Since we have supposed that $U \neq 0$, from the above equation it follows that $\alpha(\lambda - \alpha) = 3$. By means of (3.1), it is clear that $\beta = \lambda\alpha$, which together with (2.12) gives us $g(U, U) = 3$. Thus, using (3.8) and (3.14), the equation (3.13) is reformed as

$$ad\lambda(\xi)g(A\xi, X) = (3\lambda - 8\alpha)g(U, X) - 3\alpha(X) + ad\alpha(AX).$$

Replacing X by U into this equation and making use of (3.14), we obtain $3(3\lambda - 8\alpha) = 0$, which yields $3\lambda = 8\alpha$. Thus we can see that $\alpha = 3/\sqrt{5}$, $\lambda = 8/\sqrt{5}$ and $\mu = \sqrt{3}$.

On the other hand, since $g((\phi S - S\phi)U, W) = -g(SU, \phi W) - g(SW, \phi U)$, using (3.5), (3.7) and (3.8), we get $g((\phi S - S\phi)U, W) = 3g(\phi U, W)$, which together with (3.2) implies $g((\phi S - S\phi)U, W) = -3\sqrt{3}$. Then it is clear that $\|\phi S - S\phi + \sqrt{3}(W \otimes U + U \otimes W)\|^2 = 0$, where we have used (2.11) and (2.12). Thus we can see that $\phi S - S\phi = -\sqrt{3}(W \otimes U + U \otimes W)$. Since $\phi U = -\sqrt{3}W$, we obtain $\phi S - S\phi = \phi U \otimes U + U \otimes \phi U$. Combining this with (2.3), we have

$$\lambda \phi A - \phi A^2 - \lambda A\phi + A^2\phi = \phi U \otimes U + U \otimes \phi U,$$

which, together with (3.1), (3.2) and (3.14), shows that

$$\lambda \phi A^2 - \phi A^3 - \lambda A\phi A + A^2\phi A = (\alpha - \lambda)\{A\xi \otimes U + U \otimes A\xi\} + 3U \otimes \xi.$$

Substituting X by ξ into (1.7), we get

$$(\nabla_\xi S)X = 3g(U, X)\xi + 3\eta(X)U + \lambda(\nabla_\xi A)X - A(\nabla_\xi A)X - (\nabla_\xi A)AX,$$

which, together with (1.6) and (2.1), leads to

$$\lambda \phi A^2X - \phi A^3X - \lambda A\phi AX + A^2\phi AX = 3g(U, X)\xi + \lambda(\nabla_\xi A)X - A(\nabla_\xi A)X - (\nabla_\xi A)AX.$$
From (3.16) and (3.17), it is seen that

\[(\alpha - \lambda)\{A^2 \xi \otimes U + U \otimes A\xi\}(X) + 3U \otimes \xi(X)\]
\[= 3g(U,X)\xi + \lambda(\nabla \xi A)X - A(\nabla \xi A)X - (\nabla \xi A)AX.\]

By using the Codazzi equation (1.5), the equation (3.17) is reformulated as

\[\lambda \phi A^2 X - \phi A^3 X - \lambda A \phi AX + A^2 \phi AX\]
\[= 3g(U,X)\xi + \lambda(\nabla X A)\xi - \lambda \phi X - A(\nabla X A)\xi + A \phi X - (\nabla \xi A)AX,\]

which together with (3.11) yields

\[(\nabla X A)A\xi - (\nabla \xi A)AX\]
\[= \lambda \phi A^2 X - \phi A^3 X - 3g(X,U)\xi + \lambda \phi X - A \phi X.\]

Transforming this by \(\phi\) and taking account of (1.1), we get

\[\phi\{(\nabla X A)A\xi - (\nabla \xi A)AX\}\]
\[= A^3 X - \lambda A^2 X - \lambda X + \lambda \eta(X)\xi - \phi A \phi X.\]

Differentiating (3.15) covariantly along \(M_0\) and making use of (3.1), we obtain

\[(\nabla X \phi)(\lambda A - A^2)Y + \phi(\lambda(\nabla X A)Y - (\nabla X A)AY - A(\nabla X A)Y)\]
\[- (\lambda(\nabla X A) - (\nabla X A)A - A(\nabla X A))\phi Y - (\lambda A - A^2)(\nabla X \phi)Y\]
\[= \{\phi \nabla X U \otimes U + \phi U \otimes \nabla X U + \nabla X U \otimes \phi U + U \otimes \phi \nabla X U\]
\[+ (\lambda - \alpha)g(U,X)(\xi \otimes U + U \otimes \xi)\}(Y).\]

Taking the skew symmetric part for \(X\) and \(Y\) of this and then replacing \(X\) by \(\xi\) into the obtained result, then we get

\[\lambda\{X - \eta(X)\xi\} - \phi(\nabla \xi A)AX + \phi(\nabla X A)A\xi + \phi A \phi X\]
\[= g(U,X)\phi \nabla \xi U + g(\nabla \xi U, X)\phi U - g(\nabla X U, \xi)\phi U\]
\[+ g(\phi U, X)\nabla \xi U + g(\phi \nabla \xi U, X)U - (\lambda - \alpha)g(U,X)U,\]
where we have used (1.1), (1.2), (1.5) and (3.1). Combining this and (3.19) and taking account of the fact that \(g(\nabla_X U, \xi) = -g(\nabla_X \xi, U) = (\alpha - \lambda)g(A\xi, X) \), we get

\[
3g(U, \phi X)\xi + (\lambda - \alpha)g(U, \phi X)A\xi \nonumber \\
= g(U, X)\phi \nabla_\xi U + g(\nabla_\xi U, X)\phi U + (\lambda - \alpha)g(A\xi, X)\phi U \\
+ g(\phi U, X)\nabla_\xi U + g(\phi \nabla_\xi U, X)U.
\tag{3.20}
\]

On the other hand, differentiating \(U \) covariantly in the direction of \(X \) and making use of (1.2), (1.3) and (3.1), we get

\[
\nabla_X U = \alpha AX - \lambda g(X, A\xi)\xi + \phi(\nabla_X A)\xi + \phi A\phi AX,
\]

which implies that

\[
\nabla_\xi U = \alpha A\xi - \lambda \alpha \xi + \phi(\nabla_\xi A)\xi + \phi AU.
\]

Then, by means of (3.14), we have

\[
\phi \nabla_\xi U = (2\alpha - \lambda)U - (\nabla_\xi A)\xi.
\]

Substituting the last two equations into (3.20) and taking the inner product of this result and \(U \), we can see that

\[
(6\alpha - 4\lambda)g(U, X) = 0,
\]

where we have used (3.14). Thus, we obtain \(3(6\alpha - 4\lambda) = 0 \). Hence \(3\alpha = 2\lambda \). Since \(3\lambda = 8\alpha \) on the subset \(M_0 \), we get \(\alpha = 0 \). This contradicts the fact that \(\alpha = 3/\sqrt{5} \). Consequently, we conclude that \(\text{Int}(M_0) = \emptyset \).

The following is immediate from Lemma 3.1.

Lemma 3.2. Let \(M \) be a real hypersurface of \(H_n \mathbb{C} \). If it satisfies \(\mathcal{L}_\xi S = 0 \) and \(A\xi \) is principal such that \(\eta(A^3\xi) = \text{tr}A \), then \(\xi \) is principal.
A characterization of some real hypersurfaces in $H_n \mathbb{C}$

Remark 1. In general, "ξ is principal" implies "$A\xi$ is principal". But the converse is not true.

Remark 2. The structure vector ξ is principal with respect to S if the Ricci tensor S satisfies $S\xi = \sigma \xi$ for some function σ on M. Under the same assumption as Lemma 3.2, we have ξ is principal with respect to S. In fact, since $\lambda = \eta(A^3\xi) = trA = h$, taking account of (3.4) we have $S\xi = -2(n-1)\xi$.

Remark 3. A ruled real hypersurface does not satisfy the condition that $A\xi$ is principal. In fact, let M be a ruled real hypersurface in a complex space form $M_n(c)$. Then M satisfies

$$A\xi = \alpha \xi + \beta V(\beta \neq 0),$$

$$AV = \beta \xi,$$

$$AX = 0$$

for any vector X orthogonal to ξ and V, where V is a unit orthogonal to ξ, and α and β are smooth functions on M. Assume that M satisfies the condition that $A\xi$ is principal, that is, $A^2\xi = \lambda A\xi$. Then using the above properties of M, we get $A^2\xi = A(\alpha \xi + \beta V) = (\alpha^2 + \beta^2)\xi + \alpha \beta V$ and $A^2\xi = \lambda (A\xi) = \alpha \lambda \xi + \beta \lambda V$. Thus comparing to these two equations, we have $\alpha = \lambda$ and $\beta = 0$. This contradicts the fact that $\beta \neq 0$.

From Lemma 3.2 and Theorem B we have the following.

Theorem 3.3. Let M be a real hypersurface of $H_n \mathbb{C}(n \geq 3)$. If $A\xi$ is principal such that $\eta(A^3\xi) = trA$ and M satisfies $\mathcal{L}_\xi S = 0$, then M is locally congruent to type A.

For a real hypersurface of $H_n \mathbb{C}$ satisfying the condition "$\mathcal{L}_\xi S = 0"$, we see that $\phi S = S\phi$ if and only if ξ is principal. Thus we get the following.

Theorem 3.4. Let M be a real hypersurface of $H_n \mathbb{C}(n \geq 3)$. If M satisfies $\mathcal{L}_\xi S = 0$ and $\phi S = S\phi$, then M is locally congruent to type A.
References