APPLICATIONS OF RUSCHEWEYH DERIVATIVES

S. K. Lee, O. S. Kwon and N. E. Cho

1. Introduction

Let $A(n)$ denote the class of functions of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \quad (n = 1, 2, 3, \ldots)$$

which are analytic in the unit disk $U = \{z : |z| < 1\}[8,9]$. An univalent function $f(z)$ belonging to $A(n)$ is said to be starlike of order γ, $0 \leq \gamma < 1$, if it satisfies

$$\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \gamma$$

for all $z \in U$. We denote this class by $S^*(n, \gamma)$.

An univalent function $f(z)$ belonging to $A(n)$ is called convex of order γ, $0 \leq \gamma < 1$, if it satisfies

$$\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \gamma$$

for all $z \in U$. We denote this class by $C(n, \gamma)$.

Let $f \in A(n)$ and $g \in S^*(n, \gamma)$, $0 \leq \gamma < 1$. Then we define $f \in K(n, \beta, \gamma)$ if and only if

$$\text{Re} \left(\frac{zf'(z)}{g(z)} \right) > \beta,$$
where $0 \leq \beta < 1$ and $0 \leq \gamma < 1$. Such functions are called close-to-convex functions of order β type γ.

Let $f \in A(n)$ and $g \in C(n, \gamma)$, $0 \leq \gamma < 1$. Then we define $f \in C^*(n, \beta, \gamma)$ if and only if

$$Re \left(\frac{(zf'(z))'}{g'(z)} \right) > \beta,$$

where $0 \leq \beta < 1$.

Let $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$ and $g(z) = z + \sum_{k=n+1}^{\infty} b_k z^k$ in $A(n)$. Then the Hadamard product (or convolution) $f \ast g(z)$ of $f(z)$ and $g(z)$ is defined by

$$f \ast g(z) = z + \sum_{k=n+1}^{\infty} a_k b_k z^k \quad (n = 1, 2, 3, \ldots).$$

By using the Hadamard product, we define, for $\alpha \geq -1$,

$$D^\alpha f(z) = \frac{z}{(1 - z)^{1+\alpha}} \ast f(z)$$

for $f \in A(n)$, $D^\alpha f(z)$ is called the Ruscheweyh derivative and was introduced by Ruscheweyh[11].

We easily note that, for $\alpha \geq -1$,

$$D^\alpha(zf'(z)) = z(D^\alpha f(z))'.$$

2. Main results

In proving our results, we shall need the following lemmas due to Miller and Mocanu [5, 6], and Fukui and Sakaguchi [2].

Lemma 2.1 [5, 6]. Let $\psi(u, v)$ be a complex function,

$$\psi : D \rightarrow C, \quad D \subset C \times C,$$

where C is a complex plane,

and let $u = u_1 + iu_2$ and $v = v_1 + iv_2$. Suppose that the function $\psi(u, v)$ satisfies the following conditions:

i) $\psi(u, v)$ is continuous in D,

ii) $(1, 0) \in D$ and $Re\{\psi(1, 0)\} > 0$,

iii) $Re\{\psi(iu_2, v_1)\} \leq 0$ for all $(iu_2, v_1) \in D$ with $v_1 \leq -n(1 + u_2^2)/2$.

Let $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \cdots$ be analytic in the unit disk U such that $(p(z), z'p(z)) \in D$ for all $z \in U$. If $Re\{\psi(p(z), zp'(z))\} > 0 \quad (z \in U)$, then $Re\{p(z)\} > 0 \quad (z \in U)$.
LEMMA 2.2 [2]. For a real number \(\alpha (\alpha > -1) \), we have

\[
z(D^\alpha f(z))' = (\alpha + 1)D^{\alpha+1}f(z) - \alpha D^\alpha f(z).
\]

Now we consider the new classes:

\[S_\alpha^*(n, \gamma) = \{ f \in A(n) : D^\alpha f \in S^*(n, \gamma), \ \alpha \geq -1 \} . \]

\[C_\alpha(n, \gamma) = \{ f \in A(n) : D^\alpha f \in C(n, \gamma), \ \alpha \geq -1 \} . \]

\[K_\alpha(n, \beta, \gamma) = \{ f \in A(n) : D^\alpha f \in K(n, \beta, \gamma), \ \alpha \geq -1 \} . \]

\[C_\alpha^*(n, \beta, \gamma) = \{ f \in A(n) : D^\alpha f \in C^*(n, \beta, \gamma), \ \alpha \geq -1 \} . \]

Above all classes is equal to the classes of Noor[7] when \(n = 1 \), respectively.

We study some properties of these classes and an integral operator for these classes.

Applying the above Lemma 2.1 and Lemma 2.2, we have the following theorem.

Theorem 2.3. For \(\alpha \geq 0 \), we get \(S_\alpha^*(n, \gamma) \subset S_{\alpha+1}^*(n, \gamma) \).

Proof. Let us define the function \(h(z) \) by

\[
(2.1) \quad \frac{z(D^\alpha f(z))'}{D^\alpha f(z)} = \gamma + (1 - \gamma)h(z),
\]

where \(h(z) = 1 + c_nz^n + c_{n+1}z^{n+1} + \cdots \) is analytic in \(U \). Hence, from Lemma 2.2, we get

\[
\frac{D^{\alpha+1}f(z)}{D^\alpha f(z)} = \frac{1}{\alpha + 1} \left(\frac{z(D^\alpha f(z))'}{D^\alpha f(z)} + \alpha \right)
\]

\[
= \frac{1}{\alpha + 1} \left((1 - \gamma)h(z) + \gamma + \alpha \right)
\]

or

\[
(2.2) \quad D^{\alpha+1}f(z) = \frac{1}{\alpha + 1} \left((1 - \gamma)h(z) + \gamma + \alpha \right) D^\alpha f(z).
\]
Differentiating both sides of (2.2) logarithmically and multiplying z to both sides of that equation, we have
\[
\frac{z(D^{\alpha+1}f(z))'}{D^{\alpha+1}f(z)} = \frac{z(D^{\alpha}f(z))'}{D^{\alpha}f(z)} + \frac{(1 - \gamma)zh'(z)}{(1 - \gamma)h(z) + \gamma + \alpha}
\]
\[
= (1 - \gamma)h(z) + \gamma + \frac{(1 - \gamma)zh'(z)}{(1 - \gamma)h(z) + \gamma + \alpha}.
\]

If $f \in S^*_\alpha(n, \gamma)$, then we have
\[
\text{Re} \left((1 - \gamma)h(z) + \frac{(1 - \gamma)zh'(z)}{(1 - \gamma)h(z) + \gamma + \alpha} \right)
\]
\[
= \text{Re} \left(\frac{z(D^{\alpha+1}f(z))'}{D^{\alpha+1}f(z)} - \gamma \right) > 0.
\]
(2.3)

Defining the function $\psi(u, v)$ by
\[
\psi(u, v) = (1 - \gamma)u + \frac{(1 - \gamma)v}{(1 - \gamma)u + \gamma + \alpha}
\]
where $u = h(z)$ and $v = zh'(z)$, we have
i) $\psi(u, v)$ is continuous in $D = \left(C - \left\{ \frac{x + \alpha}{\gamma + 1} \right\} \right) \times C$,
ii) $(1, 0) \in D$ and $\text{Re}\psi(1, 0) = 1 - \gamma > 0$,
iii) for all (iu_2, v_1) such that $v_1 \leq -n(1 + u_2^2)/2$,
\[
\text{Re}\psi(iu_2, v_1) = \frac{(1 - \gamma)v_1(\gamma + \alpha)}{(\gamma + \alpha)^2 + (1 - \gamma)^2u_2^2} \leq -\frac{1}{2} \frac{(1 - \gamma)n(1 + u_2^2)(\gamma + \alpha)}{(\gamma + \alpha)^2 + (1 - \gamma)^2u_2^2} < 0.
\]

Therefore, the function $\psi(u, v)$ satisfies the conditions in Lemma 2.1. This implies that $\text{Re}(h(z)) > 0$ ($z \in U$), which is equivalent to
\[
\text{Re} \left(\frac{z(D^{\alpha}f(z))'}{D^{\alpha}f(z)} \right) > \gamma \quad (z \in U).
\]
(2.5)

Hence $f \in S^*_\alpha(n, \gamma)$.
COROLLARY 2.4. For $\alpha \geq 0$, we get $C_{\alpha+1}(n, \gamma) \subset C_\alpha(n, \gamma)$.

Proof. We easily note that

\begin{equation}
(2.6) \quad f \in C(n, \gamma) \text{ if and only if } zf' \in S^*(n, \gamma).
\end{equation}

By Theorem 2.3 and (2.6), we have that

\[D^{\alpha+1}(zf'(z)) = z(D^{\alpha+1}f(z))' \in S^*(n, \gamma) \]

if $f \in C_{\alpha+1}(n, \gamma)$. Thus

\[zf' \in S^*_{\alpha+1}(n, \gamma) \subset S^*_\alpha(n, \gamma). \]

Hence

\[z(D^\alpha f(z))' = D^\alpha(zf'(z)) \in S^*(n, \gamma). \]

Therefore $f \in C_\alpha(n, \gamma)$.

THEOREM 2.5. For $\alpha \geq 0$, we have

\begin{equation}
(2.7) \quad K_{\alpha+1}(n, \beta, \gamma) \subset K_\alpha(n, \beta, \gamma).
\end{equation}

Proof. Assume that $f \in K_{\alpha+1}(n, \beta, \gamma)$. Then there exists a function $k \in S^*(n, \gamma)$ such that

\begin{equation}
(2.8) \quad \text{Re} \left(\frac{z(D^{\alpha+1}f(z))'}{k(z)} \right) > \beta.
\end{equation}

Letting $k(z) = D^{\alpha+1}g(z)$, we have $g \in S^*_\alpha(n, \gamma) \subset S^*_\alpha(n, \gamma)$, by Theorem 2.3. Hence we have

\[\text{Re} \left(\frac{z(D^\alpha g(z))'}{D^\alpha g(z)} \right) > \gamma \]

or

\begin{equation}
(2.9) \quad \frac{z(D^{\alpha+1}g(z))'}{D^\alpha g(z)} = (1 - \gamma)h(z) + \gamma,
\end{equation}
where $Re(h(z)) > 0$ ($z \in U$). Now we set

$$\frac{z(D^\alpha f(z))'}{D^\alpha g(z)} = (1 - \beta)p(z) + \beta$$

or

(2.10) $$z(D^\alpha f(z))' = D^\alpha g(z)\{(1 - \beta)p(z) + \beta\},$$

where $p(z) = 1 + p_nz^n + \cdots$. From Lemma 2.2, (1.8) and (2.10), we have

$$\frac{z(D^{\alpha+1} f(z))'}{D^{\alpha+1} g(z)} = \frac{D^{\alpha+1}(z f'(z))}{D^{\alpha+1} g(z)}$$

$$= \frac{1}{\alpha + 1}z(D^\alpha(z f'(z))') + \frac{\alpha}{\alpha + 1}D^\alpha(z f'(z))$$

$$= \frac{z(D^\alpha(z f'(z))') + \alpha \frac{D^\alpha(z f'(z))}{D^\alpha g(z)}}{D^\alpha g(z)}$$

Differentiating both sides of (2.10), we have

$$(z(D^\alpha f(z)))' = (1 - \beta)p'(z)D^\alpha g(z) + (D^\alpha g(z))'((1 - \beta)p(z) + \beta)$$

Hence, from (1.8) we get

$$\frac{z(D^\alpha(z f'(z))')}{D^\alpha g(z)}$$

(2.12) $$= (1 - \beta)zp'(z) + ((1 - \beta)p(z) + \beta)\frac{z(D^\alpha g(z))'}{D^\alpha g(z)}$$

$$= (1 - \beta)zp'(z) + ((1 - \beta)p(z) + \beta)((1 - \gamma)h(z) + \gamma)$$

From (2.11) and (2.12), we have

$$\frac{z(D^{\alpha+1} f(z))'}{D^{\alpha+1} g(z)} = (1 - \beta)p(z) + \beta + \frac{(1 - \beta)zp'(z)}{(1 - \gamma)h(z) + \gamma + \alpha}$$
or

\[Re \left((1 - \beta)p(z) + \frac{(1 - \beta)zp'(z)}{(1 - \gamma)h(z) + \gamma + \alpha} \right) \]

(2.13)

\[= Re \left(\frac{z(D^{\alpha+1}f(z))'}{D^{\alpha+1}g(z)} - \beta \right) > 0. \]

Define the function \(\psi(u, v) \) by

\[\psi(u, v) = (1 - \beta)u + \frac{(1 - \beta)v}{(1 - \gamma)h(z) + \gamma + \alpha}. \]

(2.14)

It is clear that the function \(\psi(u, v) \) defined in \(D = C \times C \) by (2.14) satisfies conditions (i) and (ii) of Lemma 2.1. To verify condition (iii),

\[Re(\psi(zi_2, v_1)) = \frac{(1 - \beta)v_1((1 - \gamma)h_1 + \gamma + \alpha)}{((1 - \gamma)h_1 + \gamma + \alpha)^2 + (1 - \gamma)h_2^2} \]

where \(h(z) = h_1 + ih_2 \) and \(Re h(z) = h_1 > 0 \). By putting \(v \leq \frac{-n(1+u_2^2)}{2} \),

\[Re(\psi(zi_2, v_1)) \leq \frac{(1 - \beta)n(1 + u_2^2)((1 - \gamma)h_1 + \gamma + \alpha)}{2((1 - \gamma)h_1 + \gamma + \alpha)^2 + (1 - \gamma)h_2^2} < 0. \]

Therefore, the function \(\psi(u, v) \) satisfies the conditions in Lemma 2.1. This implies that \(Re(z) > 0 \) \((z \in U) \), which is equivalent to

\[Re \left(\frac{z(D^{\alpha}f(z))'}{D^{\alpha}g(z)} \right) > \gamma \quad (z \in U). \]

Hence \(f \in K_\alpha(n, \beta, \gamma) \).

From Theorem 2.5, (1.8) and the definition of \(C^*_\alpha(n, \beta, \gamma) \), we have

COROLLARY 2.6. For \(\alpha \geq 0 \), we have \(C^*_\alpha(n, \beta, \gamma) \subset C^*_\alpha(n, \beta, \gamma) \)

Proof. We note that

(2.15) \(f \in C^*(n, \beta, \gamma) \) if and only if \(zf' \in K(n, \beta, \gamma) \).
By Theorem 2.5 and (2.15), we have that
\[D^{\alpha+1}(zf'(z)) = z(D^{\alpha+1}f(z))' \in K(n, \beta, \gamma) \]
if \(f \in C_{\alpha+1}^*(n, \beta, \gamma) \). Hence
\[zf' \in K_{\alpha+1}(n, \beta, \gamma) \subset K_{\alpha}(n, \beta, \gamma). \]

Therefore
\[z(D^\alpha f(z))' = D^\alpha(zf'(z)) \in K(n, \beta, \gamma). \]

It follows that
\[f \in C_{\alpha}^*(n, \beta, \gamma). \]

Next we define the integral operator \(I_{n,c}(f) \) as
\[(2.16) \quad I_{n,c}(f) = \frac{c+1}{zc} \int_0^z t^{c-1}f(t)dt \]
for \(f \in A(n) \). The operator \(I_{1,c} \) was studied by Noor[7], Owa and Chen[10]. The operator \(I_{1,m} \) (when \(m \) is positive integers) was studied by Bernardi[1] and \(I_{1,1} \) was investigated by Libera[3] and Livingston[4].

Lemma 2.7. If \(f \in A(n) \), then for \(\alpha > -1 \), \(D^{\alpha+1}I_{n,\alpha}(f) = D^\alpha f \).

Proof. By simple calculating of (2.16), we get
\[I_{n,\alpha}(f) = z + \sum_{k=n+1}^{\infty} \frac{\alpha + 1}{\alpha + k} a_k z^k. \]

From (1.7), we have
\[D^{\alpha+1}I_{n,\alpha}(f) = z + \sum_{k=n+1}^{\infty} \frac{\prod_{j=1}^{k-1}(j + \alpha + 1) \alpha + 1}{(k - 1)! \alpha + k} a_k z^k \]
\[= z + \sum_{k=n+1}^{\infty} \frac{\prod_{j=1}^{k-1}(j + \alpha)}{(k - 1)!} a_k z^k = D^\alpha f. \]

With the aid of Theorem 2.3 and Lemma 2.7, we have
Theorem 2.8. If \(f \in S^*_\alpha(n, \gamma) \) with \(\alpha \geq 0, 0 \leq \beta < 1 \) and \(0 \leq \gamma < 1 \), then \(I_{n,\alpha}(f) \) also belongs to \(S^*_\alpha(n, \gamma) \).

Proof. If \(f \in S^*_\alpha(n, \gamma) \), then \(D^\alpha f \in S^*(n, \gamma) \). By Lemma 2.7, we have
\[
D^{\alpha+1}I_{n,\alpha}(f) \in S^*(n, \gamma).
\]
From Theorem 2.3,
\[
I_{n,\alpha}(f) \in S^*_{\alpha+1}(n, \gamma) \subset S^*_\alpha(n, \gamma).
\]

Using Theorem 2.5 and Lemma 2.7, we have the following.

Theorem 2.9. If \(f \in K_\alpha(n, \beta, \gamma) \) with \(\alpha \geq 0, 0 \leq \beta < 1 \) and \(0 \leq \gamma < 1 \), then \(I_{n,\alpha}(f) \) also belongs to \(K_\alpha(n, \alpha, \beta) \).

Finally, we state the similar results for the classes \(C^*_\alpha(n, \gamma) \) and \(C^*_\alpha(n, \beta, \gamma) \) from Theorem 2.8 and Theorem 2.9.

Corollary 2.10. If \(f \in C^*_\alpha(n, \gamma) \) with \(\alpha \geq 0, 0 \leq \beta < 1 \) and \(0 \leq \gamma < 1 \), then \(I_{n,\alpha}(f) \) also belongs to \(C^*_\alpha(n, \gamma) \).

Corollary 2.11. If \(f \in C^*_\alpha(n, \beta, \gamma) \) with \(\alpha \geq 0, 0 \leq \beta < 1 \) and \(0 \leq \gamma < 1 \), then \(I_{n,\alpha}(f) \) also belongs to \(C^*_\alpha(n, \alpha, \beta) \).

References

Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea

Department of Mathematics
Kyungsung University
Pusan 608-738, Korea

Department of Applied Mathematics
Pukyong National University
Pusan 608-737, Korea