EXTENSION OF MEROMORPHIC MAPPINGS

Mitsuru Harita

1. Introduction

Kneser[12] generalized the continuation theorem on meromorphic functions of Levi[13] and Okuda-Sakai[16] gave a complete proof of it. Fuks[5] stated that any domain of meromorphy in C^n is analytically convex in the sense of Hartogs and Kajiwara-Sakai[11] proved that the envelope of meromorphy of a domain over a Stein manifold with respect to a family of meromorphic functions is p-convex in the sense of Docquier-Grauert[3] and, therefore, is a Stein manifold. Thus, Kajiwara-Sakai proved that a meromorphic function on a domain over a Stein manifold is represented by a quotient of two global meromorphic functions and solved the weak Poincaré problem affirmatively.

For domains of infinite dimension, Harita[6] obtained the same result concerning a domain of the Cartesian product of countable family of complex planes. Aurich[1,2] proved that the envelope of meromorphy over a complex Banach space is pseudoconvex. Harita[7] proved that the envelope of meromorphy of a domain over a sequentially complete complex locally convex Hausdorff space is pseudoconvex. Let E be a locally convex complex linear Hausdorff space, which is either equipped with the finite open topology, or is a Fréchet space with bounded approximation property or a DFN-space. Harita[8] proved that the coincidence of holomorphy and meromorphy of a domain over the space E making use the affirmative solution of the Levi problem.

On the other hand, let E be a sequentially complete locally convex Hausdorff space, M be a complex manifold modelled with the locally convex space E, (Ω, φ) be a Riemann domain over the complex manifold M and $(\tilde{\Omega}, \tilde{\varphi})$ be the pseudoconvex hull of (Ω, φ) in the sense of Matsuda[14]. Harita[9] proved that any meromorphic function on Ω can be meromorphically continued to a meromorphic function on $\tilde{\Omega}$ without using any solution of the Levi problem.

Received July 20, 1997 Revised Sep 9, 1997
Let M be a pseudoconvex complex manifold modelled with a complex Banach space, which has a Schauder basis, (Ω, φ) be a Riemann domain over M, the dimension of which may be infinite, $(\tilde{\Omega}, \tilde{\varphi})$ be the locally pseudoconvex hull of the domain (Ω, φ) over M. Let X be a complex Banach manifold with the weak disc property and $f : \Omega \to X$ be a meromorphic mapping. In the present paper, we prove that f is meromorphically extended to a meromorphic mapping $\tilde{f} : \tilde{\Omega} \to X$ if and only if the set of points of indeterminacy A of f is extended to an analytic thin set \tilde{A} of the pseudoconvex hull $\tilde{\Omega}$.

2. Notations and preliminaries

Let E be a complex Hausdorff linear space. A Hausdorff space M is called a complex manifold modelled with the linear space E, if there exists a family $A = \{(U_i, \varphi_i) ; i \in I\}$ of pairs (U_i, φ_i) of open sets U_i of M and homeomorphisms φ_i of open sets U_i onto open sets of E satisfying the following conditions.

1. For any $i, j \in I$ with $U_i \cap U_j \neq \emptyset$, the mapping $\varphi_i \circ (\varphi_j | (U_i \cap U_j))^{-1} : \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j)$ between open sets in E are holomorphic.
2. $\bigcup_{i \in I} U_i = M$.

A is called an atlas of M, and an element of A is called a chart of M.

Let E and F be complex Hausdorff linear spaces, and M and N be complex manifolds, which are modelled, respectively, with the linear spaces E and F, which have atlases $\{(U_i, \varphi_i) ; i \in I\}$ and $\{(U'_\alpha, \varphi'_\alpha) ; \alpha \in A\}$ respectively. Then a mapping $f : M \to N$ is said to be holomorphic if, for any $i \in I$ and any $\alpha \in A$ with $f(U_i) \cap U'_\alpha \neq \emptyset$, the mapping $\varphi'_\alpha \circ f \circ (\varphi_i | U_i)^{-1}$ is holomorphic whenever it is defined. Particularly, a holomorphic mapping of M in the complex plane C is called a holomorphic function on M. A function $p : M \to (-\infty, \infty)$ is said to be plurisubharmonic if, for each $i \in I$, the function $p \circ \varphi_i^{-1}$ is plurisubharmonic. We denote the set of plurisubharmonic functions on M by $P(M)$.

Let E be a complex Hausdorff linear space and X be a complex
manifold modelled with the linear space E. A subset A of X is said to be analytic if, for any point x of A, there exist a neighborhood U of x and a family $\{f_j; j \in J\}$ of holomorphic functions on U such that $A \cap U = \{y \in U; f_j(y) = 0 \text{ for any } j \in J\}$. A subset T of X is said to be thin if, for any point x of T, there exist a neighborhood U of x and a family $\{f_j; j \in J\}$ of holomorphic functions on U such that $T \cap U \subset \{y \in U; f_j(y) = 0 \text{ for any } j \in J\}$. Let F be a complex Hausdorff linear space and Y be a complex manifold modelled with the linear spaces F. A holomorphic mapping $\varphi : X \rightarrow Y$ called a modification if there exist thin sets S, T of, respectively, X and Y such that the restriction $\varphi|_{X-S} : X-S \rightarrow Y-T$ is a biholomorphic mapping of $X-S$ onto $Y-T$.

Let E, F be complex Hausdorff linear spaces and X, Y be complex manifolds modelled, respectively, with the linear spaces E, F. Let G be an analytic subset of the product manifold $X \times Y$ such that the projection $\pi : G \rightarrow X$ is a modification. Then, we say that there exists a meromorphic mapping $\mu : X \rightarrow Y$ and G is called the graph of μ. The intersection of all analytic sets A of X such that there exist a holomorphic mapping h of $X - A$ into Y and that the graph $G(h)$ of h coincides with $\pi^{-1}(X - A) \subset G$ is called the set of indeterminacy of μ. A meromorphic mapping μ of X in the Riemann sphere $P := C \cup \{\infty\}$, such that the image of each connected component of X does not coincide with $\{\infty\}$, is called a meromorphic function.

3. Pseudoconvex hull

Let E be a complex Hausdorff linear space, M be a complex manifold modelled with the linear space E. A complex manifold M is said to be pseudoconvex if, for any compact subset K of M, the set

$$1 \quad \mathcal{K}_P := \{x \in M; p(x) \leq \sup_{y \in K} p(y) \text{ for all } p \in P(M)\}$$

is relatively compact subset of M.

A pair (Ω, ψ) of a Hausdorff space Ω and a locally biholomorphic mapping ψ is called a domain over the manifold M. It is said to be locally pseudoconvex if, for any atlas $\mathcal{A} = \{(U_i, \varphi_i); i \in I\}$ of the manifold M and for any finite dimensional linear subspace L of E, the open
set \(((\varphi \circ \psi)^{-1}(\varphi_1(U_1) \cap L), \varphi_1 \circ \psi|_{(\varphi_1 \circ \psi)^{-1}(\varphi_1(U_1) \cap L)}\) is a pseudoconvex open set over the finite dimensional Hausdorff complex linear space \(L\).

Let \(E\) be a Hausdorff complex linear space, \(M\) be a complex manifold modelled with the linear space \(E\), \((\Omega, \varphi)\) be a domain over the complex manifold \(M\) and \(\mathcal{P}\) be the family \(\{(\lambda_j, \Omega_j, \varphi_j); j \in P\}\) of triples such that each \((\Omega_j, \varphi_j)\) is a locally pseudoconvex domain over \(M\) and that each \(\lambda_j\) is a locally biholomorphic mapping of \(\Omega\) in \(\Omega_j\) with \(\varphi = \varphi_j \circ \lambda_j\). We introduce a semi-order \(<\) in \(\mathcal{P}\). For \(j, k \in P\), we write \((\lambda_j, \Omega_j, \varphi_j) < (\lambda_k, \Omega_k, \varphi_k)\) if there exits a locally biholomorphic map \(\lambda_j^k : \Omega_j \to \Omega_k\) with \(\varphi_j = \varphi_k \circ \lambda_j^k\).

In finite dimensional case, Kajiwara[10] defined a pseudoconvex hull of a domain over a holomorphically convex manifold. Ohgai[15] constructed the Durchshnitt \((\hat{\Omega}, \hat{\varphi})\) as the minimum of the family \(\mathcal{P}\). By the same method of Matsuda[14], we can prove that the set \(\mathcal{P}\) equipped with the semi-order \(<\) is an inductive directed set in the sense of Eilenber-Steenrod[4]. In this way, we can prove the following theorem:

Theorem 1. Let \(E\) be a complex Hausdorff linear space, \(M\) be a pseudoconvex manifold modelled with the linear space \(E\) and \((\Omega, \varphi)\) be a domain over \(M\). Then there exists uniquely a minimum locally pseudoconvex domain \((\hat{\lambda}, \hat{\Omega}, \hat{\varphi})\) over \(M\) among locally pseudoconvex domains larger than \((\Omega, \varphi)\).

The triple \((\hat{\lambda}, \hat{\Omega}, \hat{\varphi})\) is called the locally pseudoconvex hull of the domain \((\Omega, \varphi)\) over the manifold \(M\).

4. Continuation of meromorphic mappings

We use the notations

\[(2)\quad D := \{z \in C; |z| < 1\},\]

and

\[(3)\quad D^* := \{z \in D; z \neq 0\}.

Let \(X\) be a Banach manifold and let \(H(D, X)\) be the space of holomorphic mappings from \(D\) into \(X\) equipped with the compact open
topology. The manifold X is said to have the weak disc property, if every sequence $\{f_n; n \geq 1\}$ of $H(D, X)$ which converges in $H(D^*, X)$, converges in $H(D, X)$ too.

Theorem 2. Let B be a complex Banach space with Schauder base, M be a pseudoconvex manifold modelled with the Banach space B, (Ω, φ) be a domain over M and $(\lambda, \Omega, \varphi)$ be the locally pseudoconvex hull of the domain (Ω, φ) over M. Let X be a complex manifold which is modelled with a complex Banach space equipped with a Schauder basis, and which has the weak disc property. Let $f : \Omega \to X$ be a meromorphic mapping. Then f is meromorphically extended to a meromorphic mapping $\tilde{f} : \tilde{\Omega} \to X$ of the locally pseudoconvex hull $\tilde{\Omega}$ in the manifold X if and only if the set of points of indeterminacy of f is extended to an analytic set of $\tilde{\Omega}$.

Proof of the necessity. Suppose that f is extended to a meromorphic mapping \tilde{f} of $\tilde{\Omega}$ in the manifold X, then the set \tilde{A} of points indeterminacy of \tilde{f} is an analytic set in $\tilde{\Omega}$ and is an extension of the set of points of indeterminacy of f.

Proof of the sufficiency. Let A be the points indeterminacy of f and \tilde{A} be an analytic set in $\tilde{\Omega}$ which is an extension of the points indeterminacy of f. We put $\Omega_A := \Omega - A$. Then the restriction $h := f|_{\Omega_A}$ is a holomorphic mapping of Ω_A in the Banach manifold X with the disc property. Let $\pi : \Omega \times X \to \Omega$ be the canonical projection. The graph $G(h)$ of h coincides with $\pi^{-1}(\Omega_A) \cap G$. Let $(\lambda_A, \tilde{\Omega}_A, \tilde{\varphi}_A)$ be the locally pseudoconvex hull of the domain $(\Omega_A, \varphi|_{\Omega_A})$ over the manifold M and $\tilde{\pi} : \tilde{\Omega} \times X \to \tilde{\Omega}$ be the canonical projection. According to Matsuda[14], h has a holomorphic extension \tilde{h} to the pseudoconvex hull $\tilde{\Omega}_A$.

Let $\overline{G(h)}$ be the closure of the graph $G(h)$ in the product space $\tilde{\Omega} \times X$. The intersection $\overline{G(h)} \cap \tilde{\pi}^{-1}(\tilde{\Omega} - \tilde{A})$ is an analytic set in the product space $\tilde{\Omega} \times X$. In other words, the closed subset $\overline{G(h)}$ is analytic in the complement of the analytic set $\tilde{A} \times X$ in the product space $\tilde{\Omega} \times X$. Moreover, the set $\lambda(\Omega) \times X$ is a connected nonempty open subset of the product space $\tilde{\Omega} \times X$ and the intersection $\overline{G(h)} \cap (\lambda(\Omega) \times X)$ is analytic across the analytic set $\tilde{\pi}^{-1}(\tilde{A})$. Hence, the set $\overline{G(h)}$ is not singular in the analytic set $\tilde{\pi}^{-1}(\tilde{A})$.

Since the closure $G(h)$ is an analytic set in the product space $\tilde{\Omega} \times X$ and since the restriction $\tilde{f}|_{G(h)}$ is a modification, it defines a meromorphic mapping \tilde{f} such that $\tilde{f}|_{\tilde{\lambda}(\tilde{\Omega})} = f$, that $\tilde{f}|_{G(h)-\tilde{\lambda}^{-1}(\tilde{A})}$ is a biholomorphic mapping onto $\tilde{\Omega} - \tilde{A}$, \tilde{f} is a desired meromorphic extension of f to the locally pseudoconvex hull $\tilde{\Omega}$.

References

2. ... Der invariante Kontinuitätssatz für meromorphe Funktionen, Math. Ann. 31 (1980), 149-166.

5. ... Special chapters of the theory of analytic functions of several complex variables, Moscow, 1963.

7. ... Continuation of meromorphic functions in a locally convex space, Mem Fac Sci Kyushu Univ 41 no 2 (1987), 115-132.

8. ... Envelopes of meromorphy of domains over locally convex spaces, Proceedings of the Third international Colloquium on Finite or Infinite Dimensional Complex Analysis, Seoul, Korea, July 31-August 2 1995, 317-323.

9. ... Continuation of meromorphic functions over infinite dimensional complex manifolds modelled with locally convex spaces, Proceedings of the Fourth international Colloquium on Finite or Infinite Dimensional Complex Analysis, Kumamoto, Japan, July 29-31, 1996.

Graduate School of Mathematics
Kyushu University 33
Fukuoka 812-81, Japan