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CONTINUATION OF KERNEL FUNCTIONS FOR 
INFINITE DIMENSIONAL REINHARDT DOMAINS

Lin Li

1. Introduction

Sommer-Mehring[7] investigated the Kernhiille K(D) of a bounded 
domain D in the finite n-dimensional complex space Cn and obtained 
the relation

(1) C K(Z>) C A(P)

^^ere-iZ(Z?) donxaiirD and j4(P)
is the open kernel of the intersection of domains of holomorphy, which 
contain D as a relatively compact subset.

On the other hand, Nishihara[6] investigated domains of convergence 
of power series in Reinhardt domains of a Frechet space with uncondi
tional Schauder basis. In the previous paper [2] and [3], we introduced 
kernel functions for domains D in a separable Hilbert space
and in the previous papers [4] and [5], the author calculated domains 
of convergence of _K(z)6) for polydiscs and ellipsoids.

In the present paper under the condition (6) corresponding to the 
condition concerning Nebenhiille of Sommer-Mehring[7], she proves 
that the domain of convergence of the power series at the origin of 
the kernel function of a complete Reinhardt domain containing the 
origin coincides with the logarithmically convex hull of it and extends 
the results of Sommer-Mehring[7] to domains of infinite dimension.

2. Abstract Wiener measures

A triple (Bi, T, B2) of a self adjoint nuclear mapping T of a Banach 
space Bi into a Banach space & is called an abstract Wiener spaces. 
Grossfl] gave an abstract Wiener measure to the triple B2).
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When Bi and B2 are separable Hilbert spaces, we can regard them as 
the Hilbert space

00

⑵ 砂 ：= {(Z1,Z2, … ,2危, …); 시2 < +oq}
n=l

of square summable sequences of complex numbers. Let {vn\ z/ > 1} be 
a sequence of positive numbers satisfying £辭\ i/n V +00. We define 
a nuclear mapping

⑶
꼬 "2 〜2,

£ 9 z =(2",矣, •… 3m・・) S 끄 (z) ：= ,四2危)…) € €2

and regard the triple (^2,T,^2) a용 an abstract Wiener space. In the 
previous paper [2], for a domain D in the Hilbert space £2 given as 
(2), we defined the kernel function K(z,w) for a general domain D in 
the space £2 and, for a Reinhardt domain D containg the origin in the 
space 土 we gave the following representation as Theorem 2 of [2]:

(身 5 =方蒜云

for any (z, w) E Dr x D” where Dr := D Cl T(£2).

Let n be any positive integer and 7rn : Cn —> f2 be the canonical 
injection defined by

⑸ Cn 3(Z1, Z2? • - • , 2危)s(Z1,22, •…,2危，0, 0)■ • • ) G £2.

Let Z)be a Reinhart domain containing the origin in 砂 and D be its 
envelope of holomorphy. Of course, D coincides with the logarithmic 
convex hull of D by the results of Nishihara[6]. We assume hereafter 
that, for any positive integer n, there exists a bounded Reinhardt do
main Dn containing the origin in Cn, whose envelope of holomorphy 
is denoted by Dnt) and that, for the canonical projection pn ： Cn, 
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the sequence (p-1(Pn);n > 1} is monotonically decreasing and there 
holds

oo

(6) CD = the closure of [J 卩了(。，，匚)

n=l

which corresponds to the condition on Nebenhiille of Sommer-Mehring 
[23], where the notation C denotes the complement.

Let Conv(Dz) be the intersection of the domain of convergence of the 
power series K(z, z) in the variable z E and the dense image T(^2), 
and let Conv(D2)w) be the intersection, of the domain of convergence of 
the power series w) in the variable (z, w) G x £2 and the dense 
image T(^2) x T(^2). We have Dr C Conv(Z>z) C T(^2).

MAIN Theorem. Lei D be a bmmded camp血e瓮Wn五羽'dtdsuain 
containing the origin in the space £2 and D be the envelope of holo- 
morphy of D. Under the assumption (6), we have

(7) Conv(DZiW) = ((z,w);z £ Pr,w G 糸，}.

Proof. Since there holds

⑶ J 匕山이2业卩)—，/시?이2业?x，이2项，

according to the inequality of Schwarz, we have

(9) |K(z,w)|2 < |K(z, 이 x |K(s, 迎)I

and, hence, we have

(10) Conv(Dz) x Conv(Dw) C Conv(J9z)w).

In accordance with Nishihara[6], we have

(11) Dt C Conv(Z)z)
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and, hence, we have

(12) Dt x Dt C Conv(DZjW).

According to Nishihara[6] and the above preparations, the domain 
of convergence K(z,z) is a bounded complete logarithmically convex 
Reinhardt domain in the Hilbert space 伉

In order to prove the inequality reverse to (12) by the method of 
reduction to absurd, we assume that there were a point €
Conv(D^jW) with(2气危。))« Dr x g. We may assume that £

Since there holds (2而)，後(°)) £ Conv(Z)z>w), there exist neigh
borhood U and V, respectively of and in such that 나lere 
holds

(13) (UxV)fl (€2 x £2) c Conv(Pz,w).

Since there holds 牛 i)n by the assumption (6), the point 
belongs to the closure of the union 1 {complement of Pn).
Hence, there exists a positive integer n with U A p'1 (complement 
of Dn)丰知 a point of which is denoted by z⑴.By the theory of 
convex sets of finite dimension, there would be a continuous real valued 
linear functional sn on RJ1 such that we would have 5n < 0 on Dn 
and > 0. Without loss of generality, we may assume that all
coefficients of sn are non negative integers. There would be a complex 
valued continuous complex linear functional hn(z) with coefficients non 
negative integers on the complex linear space Cn such that Real(/zn)= 
«sn- We may assume that the imaginary part of hn(z^) = 0. Then we 
have

(14) I如(z⑴)| > 1, sup{|如(z)|;z e 瓦} < 1.

Since the holomorphic function /(z) on D defined by

岡 形)：=_'如印))
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is P-bounded on D and, therefore, belongs to the Hilbert space 总(£)卩 

d心. Since is the reproducing kernel of the function space
d/i), according to [3] the호e holds the integral representation

(16) f(z) = [ (迪)叩

Jd

and the function /(z) is holomorphically continued to the point z⑴ E 
Cn C T(-^2), what conflicts with the above construction of the holo
morphic function J(z), which has the point z⑴ as a singularity.
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