CONTINUATION OF KERNEL FUNCTIONS FOR INFINITE DIMENSIONAL REINHARDT DOMAINS

Lin LI

1. Introduction

Sommer-Mehring[7] investigated the Kernhülle $K(D)$ of a bounded domain D in the finite n-dimensional complex space C^{n} and obtained the relation

$$
\begin{equation*}
H(D) \subset K(D) \subset A(D) \tag{1}
\end{equation*}
$$

where- $H(D)$ is the envelope of holomorphy of the domain D and $A(D)$ is the open kernel of the intersection of domains of holomorphy, which contain D as a relatively compact subset.

On the other hand, Nishihara[6] investigated domains of convergence of power series in Reinhardt domains of a Fréchet space with unconditional Schauder basis. In the previous paper [2] and [3], we introduced kernel functions $K(z, \zeta)$ for domains D in a separable Hilbert space and in the previous papers [4] and [5], the author calculated domains of convergence of $K(z, \zeta)$ for polydiscs and ellipsoids.

In the present paper under the condition (6) corresponding to the condition concerning Nebenhülle of Sommer-Mehring[7], she proves that the domain of convergence of the power series at the origin of the kernel function of a complete Reinhardt domain containing the origin coincides with the logarithmically convex hull of it and extends the results of Sommer-Mehring[7] to domains of infinite dimension.

2. Abstract Wiener measures

A triple (B_{1}, T, B_{2}) of a self adjoint nuclear mapping T of a Banach space B_{1} into a Banach space B_{2} is called an abstract Wiener spaces. Gross[1] gave an abstract $W_{2 e n e r ~ m e a s u r e ~ t o ~ t h e ~ t r i p l e ~}\left(B_{1}, T, B_{2}\right)$.

When B_{1} and B_{2} are separable Hilbert spaces, we can regard them as the Hilbert space

$$
\begin{equation*}
\ell^{2}:=\left\{\left(z_{1}, z_{2}, \cdots, z_{n}, \cdots\right) ; \sum_{n=1}^{\infty}\left|z_{n}\right|^{2}<+\infty\right\} \tag{2}
\end{equation*}
$$

of square summable sequences of complex numbers. Let $\left\{\nu_{n} ; \nu \geq 1\right\}$ be a sequence of positive numbers satisfying $\sum_{n=1}^{\infty} \nu_{n}<+\infty$. We define a nuclear mapping

$$
\begin{equation*}
T: \ell^{2} \rightarrow \ell^{2} \tag{3}
\end{equation*}
$$

$\ell \ni z=\left(z_{1}, z_{2}, \cdots, z_{n}, \cdots\right) \leadsto T(z):=\left(\nu_{1} z_{1}, \nu_{2} z_{2}, \cdots, \nu_{n} z_{n}, \cdots\right) \in \ell^{2}$
and regard the triple ($\left(\ell^{2}, T, \ell^{2}\right)$ as an abstract Wiener space. In the previous paper [2], for a domain D in the Hilbert space ℓ^{2} given as (2), we defined the kernel function $K(z, w)$ for a general domain D in the space ℓ^{2} and, for a Reinhardt domain D containg the origin in the space ℓ^{2}, we gave the following representation as Theorem 2 of $\{2\}$:

$$
\begin{equation*}
K(z, w)=\sum_{\alpha} \frac{z^{\alpha} \overline{w^{\alpha}}}{\int_{D}\left|z^{\alpha}\right|^{2} \mathrm{~d} \mu_{T}} \tag{4}
\end{equation*}
$$

for any $(z, w) \in D_{T} \times D_{T}$, where $D_{T}:=D \cap T\left(\ell^{2}\right)$.
Let n be any positive integer and $\pi_{n}: C^{n} \rightarrow \ell^{2}$ be the canonical injection defined by

$$
\begin{equation*}
C^{n} \ni\left(z_{1}, z_{2}, \cdots, z_{n}\right) \leadsto\left(z_{1}, z_{2}, \cdots, z_{n}, 0,0, \cdots\right) \in \ell^{2} . \tag{5}
\end{equation*}
$$

Let D be a Reinhart domain containing the origin in ℓ^{2} and \tilde{D} be its envelope of holomorphy. Of course, \tilde{D} coincides with the logarithmic convex hull of D by the results of Nishihara[6]. We assume hereafter that, for any positive integer n, there exists a bounded Reinhardt domain D_{n} containing the origin in C^{n}, whose envelope of holomorphy is denoted by $\tilde{D_{n}}$, and that, for the canonical projection $p_{n}: \ell^{2} \rightarrow C^{n}$,
the sequence $\left\{p_{n}^{-1}\left(D_{n}\right) ; n \geq 1\right\}$ is monotonically decreasing and there holds

$$
C \tilde{D}=\quad \text { the closure of } \bigcup_{n=1}^{\infty} p_{n}^{-1}\left(C \tilde{D_{n}}\right)
$$

which corresponds to the condition on Nebenhülle of Sommer-Mehring [23], where the notation C denotes the complement.

Let $\operatorname{Conv}\left(D_{z}\right)$ be the intersection of the domain of convergence of the power series $K(z, z)$ in the variable $z \in \ell^{2}$ and the dense image $T\left(\ell^{2}\right)$, and let $\operatorname{Conv}\left(D_{z, w}\right)$ be the intersection of the domain of convergence of the power series $K(z, w)$ in the variable $(z, w) \in \ell^{2} \times \ell^{2}$ and the dense image $T\left(\ell^{2}\right) \times T\left(\ell^{2}\right)$. We have $D_{T} \subset \operatorname{Conv}\left(D_{z}\right) \subset T\left(\ell^{2}\right)$.

Main Theorem. Let D be a bounded complete Reinhardt domain containing the origin in the space ℓ^{2} and \tilde{D} be the envelope of holomorphy of D. Under the assumption (6), we have

$$
\begin{equation*}
\operatorname{Conv}\left(D_{z, w}\right)=\left\{(z, w) ; z \in \tilde{D}_{T}, \bar{w} \in \tilde{D}_{T}\right\} . \tag{7}
\end{equation*}
$$

Proof. Since there holds

$$
\begin{equation*}
\left(\sum_{\alpha}\left|\frac{z^{\alpha} \overline{w^{\alpha}}}{\int_{D}\left|z^{\alpha}\right|^{2} \mathrm{~d} \mu_{T}}\right|\right)^{2} \leq \sum_{\alpha} \frac{z^{\alpha} \overline{z^{\alpha}}}{\int_{D}\left|z^{\alpha}\right|^{2} \mathrm{~d} \mu_{T}} \times \sum_{\alpha} \frac{w^{\alpha} \overline{w^{\alpha}}}{\int_{D}\left|z^{\alpha}\right|^{2} \mathrm{~d} \mu_{T}} \tag{8}
\end{equation*}
$$

according to the inequality of Schwarz, we have

$$
\begin{equation*}
|K(z, w)|^{2} \leq|K(z, z)| \times|K(w, w)| \tag{9}
\end{equation*}
$$

and, hence, we have

$$
\begin{equation*}
\operatorname{Conv}\left(D_{z}\right) \times \operatorname{Conv}\left(D_{w}\right) \subset \operatorname{Conv}\left(D_{z, w}\right) . \tag{10}
\end{equation*}
$$

In accordance with Nishihara[6], we have

$$
\begin{equation*}
\tilde{D}_{T} \subset \operatorname{Conv}\left(D_{z}\right) \tag{11}
\end{equation*}
$$

and, hence, we have

$$
\begin{equation*}
\tilde{D}_{T} \times \tilde{D}_{T} \subset \operatorname{Conv}\left(D_{z, w}\right) \tag{12}
\end{equation*}
$$

According to Nishihara[6] and the above preparations, the domain of convergence $K(z, z)$ is a bounded complete logarithmically convex Reinhardt domain in the Hilbert space ℓ^{2}.

In order to prove the inequality reverse to (12) by the method of reduction to absurd, we assume that there were a point $\left(z^{(0)}, w^{(0)}\right) \in$ $\operatorname{Conv}\left(D_{z, w}\right)$ with $\left(z^{0}, w^{(0)}\right) \notin \tilde{D}_{T} \times \tilde{D}_{T}$. We may assume that $z^{(0)} \notin$ \tilde{D}_{T}. Since there holds $\left(z^{(0)}, w^{(0)}\right) \in \operatorname{Conv}\left(D_{z, w}\right)$, there exist neighborhood U and V, respectively of $z^{(0)}$ and $w^{(0)}$ in ℓ^{2}, such that there holds

$$
\begin{equation*}
(U \times V) \cap\left(\ell^{2} \times \ell^{2}\right) \subset \operatorname{Conv}\left(D_{z, w}\right) \tag{13}
\end{equation*}
$$

Since there holds $z^{(0)} \notin \tilde{D}_{T}$, by the assumption (6), the point $z^{(0)}$ belongs to the closure of the union $\bigcup_{n=1}^{\infty} p_{n}^{-1}$ (complement of \tilde{D}_{n}). Hence, there exists a positive integer n with $U \cap p_{n}^{-1}$ (complement of $\left.\tilde{D}_{n}\right) \neq \phi$, a point of which is denoted by $z^{(1)}$. By the theory of convex sets of finite dimension, there would be a continuous real valued linear functional s_{n} on \boldsymbol{R}^{n} such that we would have $s_{n} \leq 0$ on $\tilde{D_{n}}$ and $s_{n}\left(z^{(1)}\right)>0$. Without loss of generality, we may assume that all coefficients of s_{n} are non negative integers. There would be a complex valued continuous complex linear functional $h_{n}(z)$ with coefficients non negative integers on the complex linear space C^{n} such that Real $\left(h_{n}\right)=$ s_{n}. We may assume that the imaginary part of $h_{n}\left(z^{(1)}\right)=0$. Then we have

$$
\begin{equation*}
\left|h_{n}\left(z^{(1)}\right)\right|>1, \sup \left\{\left|h_{n}(z)\right| ; z \in \tilde{D_{n}}\right\} \leq 1 . \tag{14}
\end{equation*}
$$

Since the holomorphic function $f(z)$ on D defined by

$$
\begin{equation*}
f(z):=\frac{1}{\mathrm{e}^{h_{\mathrm{n}}(z)}-\mathrm{e}^{h_{\mathrm{n}}\left(z^{(i)}\right)}} \tag{15}
\end{equation*}
$$

is D-bounded on D and, therefore, belongs to the Hilbert space $\mathcal{A}_{b}^{2}\left(D_{T}\right.$, $d \mu)$. Since $K(z, w)$ is the reproducing kernel of the function space $\mathcal{A}_{b}^{2}\left(D_{T}, d \mu\right)$, according to [3] there holds the integral representation

$$
\begin{equation*}
f(z)=\int_{D} K(z, w) f(w) d \mu_{T}(w) \tag{16}
\end{equation*}
$$

and the function $f(z)$ is holomorphically continued to the point $z^{(1)} \in$ $C^{n} \subset T\left(\ell^{2}\right)$, what conflicts with the above construction of the holomorphic function $f(z)$, which has the point $z^{(1)}$ as a singularity.

References

1. L Gross, Potental theory on Helbert spaces, J Funct Anal. 1 (1967), 123-181.

2 J. Kajiwara and L Li, Reproducing Kernels for infinte dzmenszonal domains, Proceedings of the Fifth International Colloquium on Differential Equations, VSPP(Netberland Utrecht) (1994), 153-162
3. D K. Kim, K-B Kım and D K Zhou, Hankel Kernel for Infinte Dimensional Domanns, Proc 2nd Korean-Japanese Colloq Finte or Infinite Dim Compl Anal. (1994), 117-120
4 L Li, Incomplete Gamma Functions and Kernel Functions, Proc 3rd International Colloq Finte or Infinte Dim Compl Anal (1995), 357-368
5. J Mercer, Functions of positzve and negative type and thear connection with the theory of integral equations, Philos Trans Roy Soc London Ser A 209, 415-446
6 M Nishihara, On the monomial expansion in infinte dimenszonal spaces, Proc 3rd International Colloq. Finte or Infinite Dim Compl Anal (1995), 241-260
7. F Sommer und J Mehring, Kernfunktıon und Hüllenbildung in der Funktıonentheorie mehrever Veränderlachen, Math Ann. 131 (1956), 1-16

