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A NOTE ON SEQUENTIAL
CONVERGENCE STRUCTURES

Woo CHORL HoNG

1. Introduction and preliminaries

Recall that a topological space X is called ¢ Fréchet-Urysohn space
[1] (also simply called a Fréchet space) if it satisfies the following prop-
erty(called the Fréchet-Urysohn property[10]): every point in the clo-
sure of a subset A of X 13 a limit pownt of o sequence of ponts in
A. Indeed, topological spaces that satisfy the first axiom of countabil-
ity form a special group in the class of Fréchet-Urysohn spaces and the
metrrcspaces aredistmgmsked in thefornmrer. Many authors have stud-
ied several properties of Fréchet-Urysohn spaces and related topics (See
[1-10]). Recently, in (8], the author introduced sequential convergence
structures and showed that Fréchet-Urysohn spaces are determined by
these structures.

In order to construct our goal of this paper, we first introduce some
results of [8]. Let X be a non-empty set, P(X) the power set of X,
and let S(X) be the set of all sequences in X. Sequences in X will
be denoted by small Greek letters a,3,v etc. The k-th term of the
sequence « is denoted by a(k}. The small Latin letters s, ¢ etc. denote
monotone increasing functions of the natural number set N into itself.
The composition a0 s is the subsequence of @ which has a{s(k)) as the
k-th term.

A non-empty subfamily L of the cartesian product S{X )x X is called
a sequential convergence structure on X[8] if it satisfies the following
three conditions:

(SC 1): For each z € X, ((z),z) € L, where (z) is the constant
sequence whose n-th term is z for all indices n € N.

(SC 2): If («,z) € L, then (B,z) € L for each subsequence f of a.
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(SC3): Letz € X and A C X. If (a,z) € L for each @ € S(A), then
(B,z) & Lfor each B € S({y € X : (v,y) € L for some v € S(4)}).

Let SC{X] denote the set of all sequential convergence structures
on X.

THEOREM 1.1 [8, THEOREM 1 AND THEOREM 6]. For L € SC[X],
define a function Cy, : P(X) — P(X) as follows: for each subset A of
X,C{A)={z€ X :(a,z) € L for somea € S(A)}. Then, (X,CL)is
a Fréchet-Urysohn space endowed with the topological closure operator
Cr.

Let £(C}) denote the set of all pairs (a,z) € S(X) x X such that
a converges to z in the space (X,Cyp).

THEOREM 1.2 {8, THEOREM 3 AND COROLLARY 4]. Foreach L €
SC(X}, we have

(1) L C L(Cy) € SC[X],

(2) CL = Ct(CL) ’ and

(3) ULL' € SC[X]: CL =Cr'} = £(CL).

EXAMPLE 1.3 [8, EXAMPLE 5]. In general, L # L(CL). Let @
be the rational number set with the usual topology and let Lo =
{(a,z) € 5(Q) X Q@ : a converges to z in Q} and L = {({z),2) :
r € Q}U {(a,z) € S(Q) X Q : o converges to z in @ and « is either
increasing or decreasing}. Then we have

LG Lg = £L(CLy) = L{CL).

Hence a question, which is concerned with a sequential convergence
structure L on a set X, arises naturally: Is there a sufficient condition
for L = £L{C)?

The purpose of this paper is to give sufficient conditions for L =

L(CL) € SC{X].
2. Results

To prove our main theorem(Theorem 2.3 below), we begin with the
following lemmas.
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LEMMA 2.1. Let L € SC(X] and z,y € X. Then, ((z),y) € L if
and only if ((z),y) € L(CL).

Proof. By Theorem 1.2(1), it is sufficient to prove that if ((z),y) €
L(CL), then ((z),y) € L. If ({z),y) € L£(CL), then the constant se-
quence{z) converges to y in the space (X, C) and hence y € Cp({z}).
By definition of Cy, ({(z),y) € L.

LEMMA 2.2. Let L € SC[X]. Assume that for each ¢ € X, the
set {z € X : ((z),z) € L} is finite. If (a,z) € L(Cy), then there is a
subsequence § of a such that (§,z) € L.

Proof. If the range {a(k) : k¥ € N} of o is finite, then {k € N: a(k) =
a(ke)} is infinite for some ky € N, equivalently, there is an element
alke) € {a(k) : k € N} such that (a(ks)) is a constant subsequence of
a. Since (a,z) € £{Cr) and since £(C) € SC[X] by Theorem 1.2 (1),
we have ((a{ko)),z) € L(CL). So, by above Lemma 2.1, {(a(kp)),z)-€
L and hence it holds. Hence, it remains to prove the case when {a(k) :
k € N} is infinite. In this case, there is a subsequence o' of & such
that a'(k;) # a'(kz) for each ky, k2 € N with ky # k2 Thus, without
loss of generality, we now get to assume that a(k1) # a(ky) for each
ky,ky € N with ky # k; and the set {k € N: ((a(k)),z) € L} is empty.
Since (o, 2} € L(CL), z € Cr({a(k) : k € N}), and so we have that
(7,2) € L for some v € S({a(k) : k € N}) by the definition of Cf.
Either {v(k): k € N}) is finite or {y(k) : k € N}) is infinite.

Case 1. {v(k): k € N}) is finite. Since (v,z) € L, it is easy to check
that there exists a number ng € N such that ((y(ne)),z) € L. It is
impossible.

Case 2. {v(k) . k € N}) is infinite. Let f be the function from N
into itself with y(k) = a(f(k)), for each k € N. By the definition of
Cr, we know that v need not be a subsequence of «, i.e., f need not
be monotone increasing. Since {vy(k) : k¥ € N} is infimite, we get to
construct by induction a sequence 8 as follows: 8(1) = v(1) = a(f(1))
and for each n > 2, 8(n) = y(k,) = a{f(kn)), where ky = 1 and
kn =min{p € N:p> kn_; and f(p) > f(kn—1)}. Then, it 1s obvious
that kl < k‘z < k3 < -- and f(k]) < f(kg) < f(kg) < ey and
so we see that 2 is a subsequence of v and it also a subsequence of

a. It follows that (8,z) € L by (SC 2), and therefore it is a desired
subsequence of «.
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We now obtain our main theorem.

THEOREM 2.3. Assume the hypothesis of Lemma 2.2. If L satisfies
additionally the following two conditions (SC 4) and (SC 5), then L =
L(Cy).

(SC4): Leta € S(X) andz € X. If(8,z) € L for some subsequence
B of a, let B = aos, such that N — {s(k) : k € N} is finite, then
(a,z) € L.

(SC 5): Let a € S(X) and z € X. If there is a finite(infinite} se-
quence (8, ) of subsequences of a, let f, = aos, foralln € {1,2,--- ,p}
(for all n € N), such that (fn,z2) € L for all n € {1,2,--- ,p}(for
alln € N), {si(k) : k €e N} n{s,(k) : k € N} =0 ifi # j and
UP_i{s'(k) : k € N} = N(resp. U,en{s:(k) : k € N} = N), then
(a,z) € L.

Proof. By Theorem 1.2 (1), L C L£{(CL). It is sufficient to show
that £(CL) C L. Let (a,z) € L(Cy). Then, by above Lemnma 2.2,
there is a subsequence f; of a such that (8;,z) € L, let 8 =aos;. If
N—{s1(k) : k € N} is finite, then by (SC 4) it is obvious that (e, z) € L
and hence it holds. If N — {s,(k) : ¥ € N} is infinite, by (SC 2) and
Lemma 2.2, there is again a subsequence 3, of a, let A2 = a 0 s,
such that (B2,2) € L and {s1(k) : k¥ € N} N {s2(k) : £ € N} = 0.
If N— UL {s.(k) : k € N} is finite, then (a,z) € L by (SC 4) and
the finite case of (SC 5). In the case that N — U?_, {s,{(k) : k € N} is
infinite, it recurs to the steps above. Thus, by the recursive arguments
as above, we have that either there is a finite family {81,862, - ,Bn}
of subsequences of a, let B, = a0, for all 7 € {1,2,--- ,n}, such that
(Bisx) € Lforall s, {s,(k) : ke N}n{s,(k): ke N} =0 if: #
and U2 {s:(k) : £ € N} = N or there does not exist a finite family of
subsequences of « satisfying the above conditions. In any case we have
(a,2) € L by (SC 4) and (SC 5). Note that in the latter(infinite) case
we use the inductive method. Therefore, £L(Cr) C L.

COROLLARY 2.4. Let L € SC[X] and assume the hypothesis of
Lemma 2.2, If L satisfies additionally the two conditions (SC 4) and
(SC 5), then there is a Fréchet-Urysohn topology T on X such that
L = {(a,z) € S(X) x X : a converges to z in the Fréchet-Urysohn
space (X,T)}. Infact, T = {X - Cr(4) : A€ P(X)}, ie, Cr is the
closure operator on the Fréchet-Urysohn space (X, T).
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Proof. 1t follows from Theorem 1.1 and Theorem 2.3.

EXAMPLE 2.5. In general, the converse of Theorem 2.3 is not true
and hence the converse of Corollary 2.4 is also not true. Let a = (x,)
be a sequence in the real line R defined by

'ﬁi—l fn=14+2+---+k, for somek, € N
mEY . Hl4+-+kl<n<lt--+k +(k,+1)
-+ (ki +2—1) n n n
for some k!, ¢ Nandn=(1+---+kl) +:
t for some: € {1,2,--- ,kL}

for 2l n € N_For eacht € N, let 8, = @ 0 s; be a subsequence of o
defined as follows:
sitk)={14+2+---+(k—1D}+1forallkeN
and for each 1 > 2,
Si(k)=8,-a(k+1)+1forallk € N.

Then it is easy to check that B, converges to 0 in R for each : € N,
{s:(k) : k € N}N{s){(k) : ¥k € N} = @ if 1 # 7 and U,ex{s:(k) :
k € N} = N. Clearly, the sequences a and 3,2, - above satisfy
the hypotheses of (SC 5). But, a does not converge to 0 in R. In
fact, the limit of a does not exist. Note that this fact is equivalent
to the fact that the double limit of the double sequence {(amn) in R
defined by amp = m’_'i‘;n for all m,n € N does not exist. Thus, let Ly
be the set of all pairs of a convergent sequence and its the limit in R ;
Ly = {{a,2) € S(R) x R : « converges to z in R}, we have that R is
surely a Fréchet-Urysohn space and hence Ly = £(C1,), but Ly does
not satisfy the condition (SC 5) as shown above

REMARK. It is obvious that the condition (SC 4) of Theorem 2.3 is
reasonable. But, from Example 2.5, we know that the condition of the
infinite case of (SC 5) is strong in Theorem 2.3. Hence, 2 new question
naturally arises in connection with Theorem 2.3 and Example 2.5:

Question: Is there a necessary and sufficient condition for L =

L£(CL) ?
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Next, in order to give the answer to the above Question, we consider
a sequential convergence structure determined by a topological space.
Let (X,c) be a topological space endowed with a topological closure
operator ¢ and let L. be the set of all pairs of convergent sequence
and its limit in the space (X,¢); that is, L. = {{(e, 2} € S(X) x X :
converges to z in the space (X, c)}. Define a function Cy, of P(X)
into P(X) by for each subset A of X, Cr (A) = {z € X : (o, 2z) € L,
for some sequence o in A}. We call this closure operator Cr,_ the
sequential closure operator on the space (X, c){3]. It is well known that
the sequential closure operator Cy, on a topological space (X, ¢) is not
a topological closure operator; that is, C, is not idempotent and if
C'L. is a topological closure operator on X(that is, Cy,_ is idempotent),
then the space (X, Cy_) is a Fréchet-Urysohn space. It is also obvious
that if a topological space (X, ¢) is a Fréchet-Urysohn space, then the
sequential closure operator C_ on (X, ¢) is idempotent and moreover
L. = L(CL.), where L{Cy_) denates the set of all pairs of convergent
sequence and its the limit in the space (X, Cy, ). In [9], the author gave
two sufficient conditions that the sequential closure operator Cp, be
idempotent. For the sequential closure operator on a topological space
and related topics, we refer to the reader [1,3,9,10].

It is easy to verify that for a topological space (X, ¢), L. satisfies the
conditions (SC 1) and (SC 2), but not the condition (SC 3), in general.

EXAMPLE 2.6. Let X be the set consisting of pairwise distinct
objects of the following three types: points zmn, where m € N and
n € N, points y, where n € N, and a point z. We set Vi(yn) =
{yn} U {zmnlm 2 k} and let 4 denote the set of subsets W C X
such that z € W and there exists a positive integer p such that
Vi(yn) — W is finite and y, € W for all n 2 p. The collection
B = {{ama}im € Nyn € N} U~ U (Vi(ga)in € N,k € N} is a base
of a topology on X. In the space X, for each n € N, the sequence
(zmn)m € N) converges to the point y,, and the sequence (yn) con-
verges to the point z. However, for the set A = {zma|m € N,n € N},
we have that there does not exist any sequence in A converging to the
point z(see [3], p.13)}.

THEOREM 2.7 [9]. Let (X,c) be a topological space satisfying the
following condition
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(%): For each double-sequence (Zpm|n € Nym € N} of points in X
such that ((zpm|m € N),z,) € L, for each n € N and ((z,),2) € L,
((yn),z) € L. for some sequence (yn) of points in the set {Tumin €
N,m ¢ N}.

Then, the space (X,Cy_) is a Fréchet-Urysohn space and L. = L{CL.).

REMARK. Note that the condition (*) is equivalent to the condition
(SC 3) of a sequential convergence structure on a set X. Since every
Fréchet-Urysohn space (X, c) satisfies L. = L£(C,) € SC{X], every
Fréchet-Urysohn space (X, c) satisfies the condition (*). Hence, in a
topological space, the condition (%) of Theorem 2.7 is an affirmative
answer to Question. Moreover, we know that in a topological space
(X, ¢), a necessary and sufficient condition that the sequential closure
operator Cp, on the space (X, c) be idempotent is surely a necessary
and sufficient condition for L. = L(C ) € SC[X].
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