ABOUT SOME INFINITE FAMILY OF 3-MANIFOLDS

D. A. Derevnin and Y. Kim

1. Introduction

Here we will consider finitely generated groups $G(2 m, n), m \geq 0$ and $n \geq 2$, with the following cyclic presentation

$$
\begin{gathered}
G(2 m, n)=\left\langle x_{1}, \ldots, x_{n}\right| x_{\imath}^{-1}\left(x_{i+1} x_{\imath}^{-1}\right)^{m+1} x_{\imath+1}\left(x_{\imath-1} x_{2}^{-1}\right)^{m+1} x_{\imath-1}=1, \\
i=1, \ldots, n\rangle,
\end{gathered}
$$

where the indices are taken mod n. We will demonstrate that these myclically-presemted groups are closely connected with the 2-bridge-knot $b(4 m+7,2 m+3)$, that is the closure of the rational $\left(\frac{4 m+7}{2 m+3}\right)$-tangle.

In section 2 we will describe the fundamental polyhedron for the group $G(2 m, n)$ and demonstrate that this group is the fundamental group of a three-dimensional manifold In section 3 we will consider the split extension $\widehat{G}(2 m, n)$ of $G(2 m, n)$ by the cyclic automorphism and show that $\widehat{G}(2 m, n)$ is the group of the orbifold $b(4 m+7,2 m+3)(n)$. In section 4 we show that the cyclic covering manifolds $M(2 m, n)$ are also obtained as two fold branched coverings over $\mathcal{K}_{n}^{2 m}$.

2. The manifolds with fundamental groups $G(2 m, n)$

In this section we construct 3 -manifolds by polyhedron description and demonstrate, using the Siefert-Trelfall criterion, that $G(2 m, n)$ arises as a fundamental group of a 3 -manifold.

Theorem 1. For $m \geq 0$ and $n \geq 2$, the group $G(2 m, n)$ is a fundamental group of a three-dimensional manifold.

Proof. We consider a tessellation on the boundary of 2-ball, which can be regarded as a polyhedron $P(2 m, n)$, consisting of n quadrilaterals F_{1} in the north hemisphere, $n(2 m+4)$-gons T_{1} in the south
hemisphere, n quadrilaterals F_{2}^{\prime} and $n(2 m+4)$-gons T_{i}^{\prime} in the equatorial zone, where $i=1, \ldots, n$ and all indices are taken by $\bmod n$. Then the polyhedron $P(2 m, n)$ has $4 n$ faces, $8 n+2 n m$ edges and $4 n+2 n m+2$ vertices. For example, if $m=1$ and $n=3$, we have the polyhedron $P(2,3)$ as shown in Figure 1.

Figure 1. The polyhedron $P(2,3)$.
Let us consider the 1 -skeleton of P_{n} with orientation and labeling of its edges in the following manner.
(i) The oriented edges fall into $2 n+1$ classes: $x_{2}, i=1, \ldots, n$, where each class x_{2} consists $2 n m+4 n$ edges, $y_{2}, i=1, \ldots, n$, where each class y_{2} consists $3 n$ edges and z consists n edges. In this case oriented edges from the same class carry the same label.
(ii) For each $i=1, \ldots, n$ the boundary cycle of the $(2 m+4)$-gons $T_{\text {t }}$ and T_{z}^{\prime} is $x_{2} y_{i+2}\left(x_{i} x_{i+1}^{-1}\right)^{m+1}$ with the indices taken $\bmod n$.
(iii) For each $\imath=1, \ldots, n$ the boundary cycle of the quadrilaterals F_{z} and F_{i}^{\prime} is $y_{\mathrm{i}+1} x_{\mathrm{a}} z y_{i}^{-1}$ with the indices taken $\bmod n$.
Note that the set of all faces splits into pairs of faces with the same sequences of oriented boundary edges. Now we shall identify quadrilat-
erals F_{i} and F_{t}^{\prime}, and ($2 m+4$)-gons T_{2} and T_{z}^{\prime} such that the corresponding oriented edges on polygons carrying the same label are identified for each $i=1, \ldots, n$.

The resulting complex has 2 non-equivalent vertices N and $S, 2 n+1$ non-equivalent edges, $2 n$ two-cells and 1 three-cell. Thus the Euler characteristic is 0 . Then by the following theorem, due to H. Seifert and W. Threlfall [14, p.216], it forms a 3-dimensional manifold.

Theorem. A complex, which is formed by identifying the faces of a polyhedron will be a manifold if and only if its Euler characteristic equals zero.

We select N as the initial point of the closed paths and z as auxiliary path leading to the vertex S. Then the generating path classes of the fundamental group of this manifold will be represented by the closed paths: for $\imath=1, \ldots, n$,

$$
Z=z z^{-1}, X_{i}=z x_{i} \text { and } Y_{i}=y_{i} z^{-1}
$$

and relations: for $i=1, \ldots, n$,

$$
\begin{gathered}
Z=Z Z^{-1}, X_{i}=Z X_{2}, \quad Y_{i}=Y_{i} Z^{-1}, X_{2} Y_{i+2}\left(X_{i} X_{i+1}^{-1}\right)^{m+1}=1 \text { and } \\
Y_{\mathrm{r}+1} X_{\mathrm{i}} Z Y_{2}^{-1}=1 .
\end{gathered}
$$

Thus the fundamental group has the following presentation.

$$
\begin{aligned}
\left\langle X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right| X_{1} Y_{\imath+2}\left(X_{2} X_{\imath+1}^{-1}\right)^{m+1}=1, & Y_{\imath+1} X_{\imath} Y_{\imath}^{-1}=1 \\
& \imath=1, \ldots, n\rangle
\end{aligned}
$$

where the indices are taken $\bmod n$.
Therefore we see that the fundamental group is isomorphic to the group $G(2 m, n)$.

We remark that the polyhedron $P(2 m, n)$ can be considered as the natural generalization of the fundamental polyhedron for the manifolds M_{n} constructed in [11]. Indeed, throughout this paper, if $m=0$, then all results coincide with ones in [11].

3. The split extension of the group $G(2 m, n)$

Let us consider the abstract groups defined by following presentations

$$
\begin{array}{r}
\because\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right| x_{\imath} y_{i+2}\left(x_{i} x_{i+1}^{-1}\right)^{m+1}=1, y_{1+1} x_{i} y_{i}^{-1}=1, \tag{1}\\
\\
i=1, \ldots, n\rangle
\end{array}
$$

where the indices are taken $\bmod n$. With $x_{i} y_{i+2}\left(x_{i} x_{i+1}^{-1}\right)^{m+1}=1$ for all $i=1, \ldots n$, and Tieze transformation, we can easily isolate y_{1} and prove that it is another presentation of $G(2 m, n)$. Moreover we see that the group $G(2 m, n)$ has the cyclic automorphism $\rho: x_{t} \rightarrow x_{t+1}$ and $y_{i} \rightarrow y_{\imath+1}$ of order n. Now we consider the split extension $\widehat{G}(2 m, n)$ of group $G(2 m, n)$ by the cyclic group of automorphisms generated by ρ. The following theorem shows that the group $\widehat{G}(2 m, n)$ is interesting from the topological point of views.

For a knot K, we denote by $K(n)$ the 3 -dimensional orifedewith the underlying space S^{3} and as a singular set K with branched index n. Then we have the following relation between $\widehat{G}(2 m, n)$ and the knot $b(4 m+7,2 m+3)$, that is the closure of the rational $\left(\frac{4 m+7}{2 m+3}\right)$-tangle.

Theorem 2. For $m \geq 0, n \geq 2$, let $M(2 m, n)$ be the n-fold cyclic branched covering of the knot $b(4 m+7,2 m+3)$. Then $\pi_{1}(M(2 m, n)) \cong$ $G(2 m, n)$.

Proof. With the presentation (1) and the cyclic automorphism ρ of order n such that $\rho: x_{i} \rightarrow x_{i+1}$ and $y_{i} \rightarrow y_{i+1}$, we get the following presentation of the split extension $\widehat{G}(2 m, n)$ of $G(2 m, n)$ by ρ, with notations $x=x_{1}$ and $y=y_{1}$.

$$
\begin{aligned}
\widehat{G}(2 m, n) & =\left\langle\rho, x, y \mid x \rho^{2}(y)\left(x(\rho(x))^{-1}\right)^{m+1}=1, \rho(y) x y^{-1}=1, \rho^{n}=1\right\rangle \\
& =\left\langle\rho, x, y \mid x \rho^{2}(y)\left(x(\rho(x))^{-1}\right)^{m+1}=1, \rho=y(\rho x) y^{-1}, \rho^{n}=1\right\rangle .
\end{aligned}
$$

Note that ρ and ρx are conjugate. Let $\mu=\rho x$. Then $x=\rho^{-1} \mu$ and $\mu^{n}=1$. So

$$
\begin{aligned}
\widehat{G}(2 m, n) & =\left\langle\rho, \mu, y \mid \rho y=y \mu, y=\rho^{2} \mu^{-1} \rho^{-1} w_{1}^{m+1}, \rho^{n}=1, \quad \mu^{n}=1\right\rangle \\
& =\left\langle\rho, \mu \mid \rho w=w \mu, \rho^{n}=1, \quad \mu^{n}=1\right\rangle \\
& \text { where } \quad w=\mu^{-1} \rho^{-1} w_{1}^{m+1}, w_{1}=\mu \rho \mu^{-1} \rho^{-1} .
\end{aligned}
$$

We recall that the group

$$
\langle\rho, \mu \mid \rho w=w \mu\rangle \text { where } w=\mu^{-1} \rho^{-1}\left(\mu \rho \mu^{-1} \rho^{-1}\right)^{m}
$$

is the group of the $b(4 m+7,2 m+3)$-knot, where ρ and μ as shown in the Figure 2 and the index $2 m+3$ in Figure 2 denotes the number of half-twists.

Figure 2. The knot $b(4 m+7,2 m+3)$.
Therefore by [5], the group $\widehat{G}(2 m, n)$ is the fundamental group of the orbifold $b(4 m+7,2 m+3)(n)$. Hence $\pi_{1}(M(2 m, n)) \cong G(2 m, n)$.

Theorem. (Thurston) Assume $q>1$. Then $(p / q)(n)$ is hyperbolic for (i) $p=5, n \geq 4$ (ii) $p \neq 5, n \geq 3$. Moreover $(p / q)(2)$ is spherical for all p, and (5/3)(3) is euclidean.

Thanks to the above theorem(see [4] and [10]) we have that the orbifold $b(4 m+7,2 m+3)(n)$ (denoted by $\left(\frac{4 m+7}{2 m+3}\right)(n)$) is hyperbolic for $n \geq 3, m \geq 0$, and it is spherical for $n=2, m \geq 0$.

Corollary 1. The manifolds $M(2 m, n)$ is hyperbolic for $n \geq 3, m$ ≥ 0, and $M(2 m, 2)$ is the lens space $L(4 m+7,2 m+3)$ for $m \geq 0$.

Corollary 2. The group $G(2 m, n)$ is infinite for $n \geq 3, m \geq 0$, and $G(2 m, 2) \cong \mathbb{Z}_{4 m+7}$.

4. The manifolds $M(2 m, n)$ as 2 -fold coverings

In this section we will study the topological properties of manifolds $M(2 m, n)$, that gives a topological approach to the studying of cyclically-presented groups $G(2 m, n)$. This studying is analogous to the topological studying of Sieradski groups $S(n)$ and Fibonacci groups $F(2,2 n)$ given in [2], [3], [8] and [12].

Figure 3. The knot $\mathcal{K}_{4}^{2 m}$.
Firstly we define a series of knots. We recall that any knot can be obtained as the closure of some braid [1]. Let p and q be coprime integers, then by $\sigma_{i}^{p / q}$ we denote the rational p / q-tangle whose incoming arcs are i-th and $(i+1)$-th strings. For an integer $n \geq 1$ we denote by $\mathcal{K}_{n}^{2 m}$ the n-periodic knot, that is the closure of the rational 3 -strings braid $\left(\sigma_{1} \sigma_{2}^{1 /(m+2)}\right)^{n}$. The diagram of the knot $\mathcal{K}_{4}^{2 m}$ is pictured in Figure 3. Note that the knot $\mathcal{K}_{2}^{2 m}$ is equivalent, under the Reidemeister moves, to the 2 -periodic knot $b(4 m+7,2 m+3)$.

Theorem 3. For $m \geq 0$ and $n \geq 2$, the manifold $M(2 m, n)$ is the two-fold covering of the 3 -sphere branched over the knot $\mathcal{K}_{n}^{2 m}$.

Proof. By Theorem 3 the manifold $M(2 m, n)$ is the n-cyclic branched covering of the 3 -sphere S^{3}, branched over the knot $b(4 m+7,2 m+3)$. To describe $M(2 m, n)$ as the 2 -cyclic branched covering of S^{3}, branched over an n-periodic knot, we will use the following construction which is analogous to [12] and [2] where the Fibonacci groups and the Sieradski groups were topologically studied.

From the Figure 2 for the $\operatorname{knot} b(4 m+7,2 m+3)$ we see the that the orbifold $b(4 m+7,2 m+3)(n)$ has a rotation symmetry of order two denoted by τ such that the axe of the symmetry is disjoint from the knot $b(4 m+7,2 m+3)$. It is not difficult to see that this symmetry action produces the orbifold $b(4 m+7,2 m+3) /\langle\tau\rangle$ with underlying space S^{3}, and as a singular set the 2 -component link pictured in Figure 4 with branch indices 2 and n.

Figure 4. The singular set of $b(4 m+7,2 m+3) /\langle\tau\rangle$.

It is easy to see that the singular set of the quotient orbifold is the two-component link $b(8 m+14,2 m+3)$ in Figure 5, that is the 2 -bridge link obtained as the closure of the rational $\left(\frac{8 m+14}{2 m+3}\right)$-tangle.

Figure 5. The link $b(8 m+14,2 m+3)$.

We will denote the quotient orbifold $b(4 m+7,2 m+3) /\langle\tau\rangle$ by $b(8 m+$ $14,2 m+3)(2, n)$. Then we have the following covering diagram
(2) $M(2 m, n) \xrightarrow{n} b(4 m+7,2 m+3)(n) \xrightarrow{2} b(8 m+14,2 m+3)(2, n)$
and a sequence of normal subgroups

$$
\left.\begin{array}{rl}
G(2 m, n)=\pi_{1}(M(2 m, n)) & \triangleleft \widehat{G}(2 m, n)
\end{array}=\pi_{1}(b(4 m+7,2 m+3)(n)), ~(2, n)\right), ~ \$ \Omega(2 m, n)=\pi_{1}(b(8 m+14,2 m+3)(2, n)
$$

where $|\Omega(2 m, n): \widehat{G}(2 m, n)|=2$ and $|\widehat{G}(2 m, n): G(2 m, n)|=n$.
We describe the orbifold group $\Omega(2 m, n)$ using the Wirtinger representation of the link group $\pi_{1}(b(8 m+14,2 m+3))$ in figure 4 . The link group has two generators $\bar{\alpha}, \bar{\beta}$ and one relator of the form $\bar{\alpha} \bar{w}=\bar{w} \bar{\alpha}$, where a word \bar{w} is determined as follows:

$$
w=\bar{\beta}^{t_{1}} \bar{\alpha}^{t_{1}} \bar{\beta}^{13} \cdots \bar{\alpha}^{2(3 m+12)} \bar{\beta}^{2(8 m+1 s)}
$$

and $\imath j$ is the sign of the number $(2 m+3) j$ by $\bmod 2(8 m+14)$ on the segment $[-(8 m+14), 8 m+14]$. For example, if $m=0$, we get a word

$$
w=\bar{\beta} \bar{\alpha} \bar{\beta} \bar{\alpha} \bar{\beta}^{-1} \bar{\alpha}^{-1} \bar{\beta}^{-1} \bar{\alpha}^{-1} \bar{\beta}^{-1} \bar{\alpha} \bar{\beta} \bar{\alpha} \bar{\beta} .
$$

In this representation the generators $\bar{\alpha}$ and $\bar{\beta}$ correspond to the arcs with the same labels on the link diagram of $b(8 m+14,2 m+3)$ as shown in figure 4.

According to [5], we get the following presentation for the group $\Omega(2 m, n)$ of the orbifold $b(8 m+14,2 m+3)(2, n)$:

$$
\Omega(2 m, n)=\left\langle\alpha, \beta \mid \alpha w=w \alpha, \quad \alpha^{n}=\beta^{2}=1\right\rangle
$$

where the generators α and β canonically correspond to $\bar{\alpha}$ and $\bar{\beta}$ respectively.

Let us consider the group

$$
\mathbb{Z}_{n} \oplus \mathbb{Z}_{2}=\left\langle a \mid a^{n}=1\right\rangle \oplus\left\langle b \mid b^{2}=1\right\rangle
$$

and the epimorphism

$$
\theta \Omega(2, n) \Longrightarrow \mathbb{Z}_{n} \oplus \mathbb{Z}_{2}
$$

defined by setting $\theta(\alpha)=a$ and $\theta(\beta)=b$.
By the construction of the 2 -fold covering

$$
b(4 m+7,2 m+3)(n) \xrightarrow{2} b(8 m+14,2 m+3)(2, n)
$$

the loop $\beta \in \Omega(2 m, n)$ lifts to a trivial loop in $\widehat{G}(2 m, n)$, and the loop $\alpha \in \Omega(2 m, n)$ lifts to a loop in $\widehat{G}(2 m, n)$ which generates a cyclic subgroup of order n. Thus it follows that

$$
\pi_{1}(b(4 m+7,2 m+3)(n))=\theta^{-1}\left(\left\langle a \mid a^{n}=1\right\rangle\right)=\theta^{-1}\left(\mathbb{Z}_{n}\right) .
$$

For the $2 n$-fold covering

$$
M(2 m, n) \xrightarrow{2 n} b(8 m+14,2 m+3)(2, n)
$$

both loops α and β from $\Omega(2 m, n)$ lift to trivial loops in $G(2 m, n)=$ $\pi_{1}(M(2 m, n))$, hence $G(2 m, n)=\operatorname{Ker} \theta$.

Let Γ_{n} be the subgroup of $\Omega(2 m, n)$ given by

$$
\Gamma_{n}=\theta^{-1}\left(\left\langle b \mid b^{2}=1\right\rangle\right)=\theta^{-1}\left(\mathbb{Z}_{2}\right) .
$$

Then we get a sequence of normal subgroups

$$
G(2 m, n) \triangleleft \Gamma_{n} \triangleleft \Omega(2 m, n),
$$

where $\left|\Omega(2 m, n): \Gamma_{n}\right|=n$ and $\left|\Gamma_{n}: G(2 m, n)\right|=2$. We recall, that the orbifold $b(4 m+7,2 m+3)(n)$ is spherical for $n=2$, and hyperbolic for $n \geq 3$. Hence the group Γ_{n} acts by isometries on the universal covering X_{n}, that is the 3 -sphere S^{3} for $n=2$, and the hyperbolic space \mathbb{H}^{3} for $n \geq 3$. Thus we get the orbifold X_{n} / Γ_{n} and the following covering diagram

$$
\begin{equation*}
M(2 m, n) \xrightarrow{2} X_{n} / \Gamma_{n} \xrightarrow{2} b(8 m+14,2 m+3)(2, n) . \tag{3}
\end{equation*}
$$

In this case the second covering is cyclic and it is branched over the component with index n of the singular set of $b(8 m+14,2 m+3)(2, n)$ in Figure 5. But this component is the knot \mathcal{K}_{1} and is trivial. So, underlying space of X_{n} / Γ_{n} is the 3 -sphere. By the construction of the n-fold covering

$$
X_{n} / \Gamma_{n} \xrightarrow{n} b(8 m+14,2 m+3)(2, n)
$$

the loop $\alpha \in \Omega(2 m, n)$ lifts to a trivial loop in Γ_{n}, and the loop $\beta \in$ $\Omega(2 m, n)$ lifts to a loop in Γ_{n} which generates a cyclic group of order 2. Because $b(8 m+14,2 m+3)$ are 2 -bridge links whose components are equivalent, we can exchange branch indices of components in Figure 5. Therefore, the singular set of X_{n} / Γ_{n} is a n-periodic knot which can be obtained as the closure of the 3 -string braid $\left(\sigma_{1} \sigma_{2}^{1 /(m+2)}\right)^{n}$, that is the knot $\mathcal{K}_{n}^{2 m}$. Because the branch index is equal to 2 , we denote $X_{n} / \Gamma_{n}=\mathcal{K}_{n}^{2 m}(2)$.

Comparing (2) and (3), we get that the following covering diagram is commutative:

The diagram of coverings.
In particular, we have that $M(2 m, n)$ is the 2 -fold branched covering of the 3 -sphere branched over the knot $\mathcal{K}_{n}^{2 m}$, and theorem is proved.

References

1 G Burde and H. Zreschang, Knots, de Gruyter Studies in Mathematics, 5, Berlin-New York, 1985
2 A Cavicchioli, F Hegenbarth and A C. Kım, A geometric study of Sıeradski groups, to appear in Bull Australian Math Soc

3 A Caviccholi and F Spaggiari, The classzfication of 3-manıfolds with spanes related to Fzbonacci groups,, in "Algebracc Topology - Homotopy and Group Cohomology", Lect. Notes in Math 1509, Springer Verlag, 1992, pp. 50-78
4 W D Dunbar, Geometric orbzfolds, Revista Mat Univ Compl Madrid 1 (1988), 67-99

5 A. Haeflıger and N D. Quach, Une presentation de groupe fundamental d'une orbrfold, Asterisque 116 (1984), 98-107.
6. H. Helling, A C Kim, and J Mennicke, A geometric study of Fibonacci groups, SFB-343 Bielefeld, Diskrete Strukturen in der Mathematık, Preprint (1990)
7 \qquad , Some honeycombs in hyperbohc 3-space, Comm in Algebra 23 (1995), 5169-5206
8. H. M. Hilden, M T. Lozano, and \mathbf{J} M. Montesinos. The arzthmeticity of the fig-ure-eight knot orbafolds in Topology'90, Edited by B Apanasov, W Neumann, A. Ried, and L Siebenmann, de Gruyter, Berlin, 1992, pp 169-183

9 \qquad , On the arithmetic 2-bridge knots and link orbafolds and a new knot invarsant, Journal Knot Theory and its Ramifications 4 (1995), 81-114
10 C Hodgson, Degeneration and regeneration of geometric structures on three-manufolds, Ph D Thesis, Princeton University (1986)
11. G S Kım, Y. Kum and A Yu. Vesnin, The Knot 5_{2} and cychcally-presented groups, preprrnt
12 A D Mednykh and A. Yu Vesnin, Frbonacci manıfolds as two-fold coverings over the three-dimensional sphere and the Meyerhoff-Nuemann conjecture, Sibursk Mat Zh 37 no. 3 (1996), 534-542 (Russian), translated in Sıberıan Math J 37 no 3 (1996)
13. D Rolfsen, Knots and links, Berkely Ca, 1976
14. H Selfert and W Threlfall, A textbook of topology, Academic Press, Inc., 1980

Department of Mathematics
Pusan National University
Pusan 614-714, Korea
Department of Mathematics
Dongeui University
Pusan 609-735, Korea

